
Technische Universität Berlin, Germany

Master’s Thesis

Evaluating Methods to Maintain
System Stability and Security

When Reversing Changes Made
by Configuration and System
Management Tools in UNIX

Environments

May 2015

Markus Holtermann

Acknowledgment

Acknowledgment

I want to express my gratitude to Prof. Dr. habil. Odej Kao from the faculty

of Electrical Engineering and Computer Science at Technical University of Berlin,

Germany, for encouraging me to pursue the topic of this thesis.

Many thanks go to all my colleagues at Flying Circus Internet Operations

GmbH, especially Christian Kauhaus and Christian Theune who gave me the op-

portunity to work on my ideas in the field.

I thank Tim Graham for being a lector of my master’s thesis, giving it a lin-

guistic final touch.

I am forever grateful to my parents who supported me during my education in

all my decisions and encouraged me to follow my dreams.

Without the Ubuntu Germany and international Django communities I would

not have gained many skills that influenced this thesis.

Markus Holtermann I

Contents

Contents

1 Introduction 1

2 Basics 3

2.1 What Is Configuration and System Management? 3

2.2 What Is a Configuration Management Database? 3

2.3 What Is ACID Behavior? . 4

2.4 What Is a Package Manager and What Are Package Dependencies? 4

2.5 What Is a Virtual Machine and What Is a Linux Container? 5

2.6 What Is a File System? . 6

3 Related Work 7

3.1 Thematic Classification . 7

3.1.1 No Systematic Configuration Management 8

3.1.2 Divergent Configuration Management 8

3.1.3 Convergent Configuration Management 9

3.1.4 Congruent Configuration Management 12

3.2 Historical Connections . 13

4 Background 17

4.1 Configuration Changes . 17

4.2 Differences Between Local and Distributed Configuration Changes . 17

4.3 Configuration and System Management Tools 18

4.4 Problems to Consider . 19

4.5 System Stability and Security . 20

5 Resource Classification and Utilization 23

5.1 Classification of IT Resources . 23

5.2 Rules Derived From the Taxonomy 26

5.3 Use Cases of Configuration and System Management Tools 33

5.3.1 Installation, Update and Removal of Programs 33

5.3.2 Modification of User Accounts 35

5.3.3 Modifications Involving the File System 39

Markus Holtermann II

Contents

5.3.4 Network Setup Modifications 42

5.3.5 Ordering of Changes in Distributed Systems 43

6 Maintaining System Stability and Security 45

6.1 Installation, Update and Removal of Programs 45

6.2 Modification of User Accounts . 49

6.2.1 Creation . 49

6.2.2 Removal . 51

6.3 Modifications Involving the File System 53

6.4 Network Setup Modifications . 55

6.5 Ordering of Changes in Distributed Systems 56

6.5.1 Bind Server to Multiple Ports 57

6.5.2 Redundant Server Setup . 57

7 Evaluation 59

7.1 Case Study: Puppet . 59

7.2 Case Study: Ansible . 61

8 Conclusion and Prospects 63

A. List of Abbreviations V

B. List of Figures VI

C. List of Tables VII

D. Case Study: Puppet VIII

E. Case Study: Ansible XI

F. Glossary XVI

G. References XVIII

Markus Holtermann III

Abstract

Abstract

Having access to the Internet every second of our life is nowadays often taken for

granted. The work and effort system administrators put into the infrastructure

to keep services up and running smoothly is immeasurable. Fortunately there are

tools like Chef and Puppet that allow them to simplify their work and reduce

mistakes by automating repetitive tasks. Sometimes these automations do not

work as expected and can result in critical situations. Undoing changes can result

in data loss or inconsistencies, thus security and stability are a major concern.

This master’s thesis explores common use cases of configuration and system

management tools, and sheds some light on the risks faced by a system adminis-

trator when preparing rollback operations.

For this purpose the thesis categorizes various IT resources that are important

in today’s data centers. Finally, the thesis reveals risk reduction rules for rolling

back operations to those resources.

Markus Holtermann IV

1. Introduction

1 Introduction

Configuration and system management is a part of systems engineering that allows

system administrators to track changes to software and hardware configuration.

Furthermore, it provides administrators with the possibility to conveniently and

reliably apply the same changes to an infinite number of systems by simply defining

what a particular configuration file on the target systems should include or be like,

or by specifying what programs should be installed on the target system.

This master’s thesis will examine the current status of configuration manage-

ment for the reversibility of changes. This means that changes made in the past

should be able to be rolled back. A rollback can involve various tasks – e.g. restor-

ing a file to a previous state or revoking someone’s access to a system – which are

explained in depth in chapter 5 – Resource Classification and Utilization.

Keeping IT environments up to date and organized has been mentioned about

20 years ago, as presented in chapter 3.2 – Historical Connections, but has not

received any major follow ups. Situations like “Knightmare: A DevOps Cautionary

Tale” [Sev14] and “Flying Circus RCA report #13266 ” [The14b], on the other

hand, reveal the need for configuration management tools to provide support for

rollback strategies.

To explain the problem in a more practical way, imagine the following example:

A hosting provider offers virtual machines that have an IP address that is assigned

from a pool of free addresses when the machine is first set up. At some point a

customer requests the server to be shut down and removed. Once the server is

removed, its IP address is freed and goes back into the pool. However, a customer

is able to request a restore of a server from a backup within a given time frame

after its removal. This works perfectly fine as long as the original IP address is

not in use. However, configuring the network setup will fail if the IP address has

been recycled to a different machine.

This is a fairly simple example. It outlines the constraints (IP address, backup

storage space) a resource (the virtual machine) has and demonstrates that a major

Markus Holtermann 1

1. Introduction

problem is not yet solved. Changing a small part in a large system with many dif-

ferent kinds of resources involved may result in unexpected behavior if constraints

are not taken into account.

Chapter 2 – Basics provides some prerequisite knowledge for understanding the

main content of this master’s thesis. The next chapter, 3 – Related Work, outlines

others’ work and its relationship to this thesis. The background presented in chap-

ter 4 – Background provides the reader with essential knowledge that is required

to understand the remaining chapters of the thesis. Chapter 5 – Resource Clas-

sification and Utilization develops an IT resource classification from which rules

are derived that a system administrator should follow to maintain system stabil-

ity and security. Furthermore, the chapter presents use cases that are discussed

further in chapter 6 – Maintaining System Stability and Security where possible

solutions are presented. The evaluation in chapter 7 – Evaluation gives two case

studies where the rules and solutions are applied. The last chapter, 8 – Conclusion

and Prospects, summarizes the research from the previous chapters and provides

suggestions on how configuration management tools can improve their support of

rollback operations.

Markus Holtermann 2

2. Basics

2 Basics

This chapter provides basic information that a reader should know about in order

to ease understanding of this master’s thesis. System administrators are likely to

already know the content. People who are new to the fields of configuration or

system management will get the general knowledge they need to understand the

content of this master’s thesis.

2.1 What Is Configuration and System Management?

Configuration and system management is a part of systems engineering that allows

system administrators to track changes to software and hardware configuration.

Furthermore, it provides administrators with the possibility to conveniently and

reliably apply the same changes to an infinite number of systems by simply defining

what a particular configuration file on the target systems should include or be like

or by specifying what programs should be installed on the target system.

Configuration and system management software can be used to keep these

servers similarly configured. It can ensure convergence and congruence of the

systems it is used on, which is explained in depth in chapter 3.1 – Thematic Clas-

sification.

2.2 What Is a Configuration Management Database?

A configuration management database (CMDB) provides a configuration and sys-

tem management software with additional information that the software will in-

clude when applying changes to a system. This could, for example, be the list of

customers, the virtual machines that belong to a customer and the IP addresses

assigned to those virtual machines.

A configuration and system management software will use the information from

the database to automatically generate the changes that need to be performed on

each system.

Markus Holtermann 3

2.3 What Is ACID Behavior?

As will be explained in a later chapter of this thesis, a CMDB can also be used

to keep track of the state of each resource, e.g. mark availability of an IP address

or the turn-down time of a virtual machine.

2.3 What Is ACID Behavior?

Databases are an important place to store information of whatever structure. A set

of modifications that logically belong together can be grouped in a “transaction”.

In order to continuously and concurrently provide “correct” data, in 1981, Jim

Gray developed and defined some properties a system has to obey [Gra81]. Two

years later, in 1983, Andreas Reuter and Theo Härder added the term Isolation to

the already defined Atomicity, Consistency and Durability. This essentially marks

the beginning of the term ACID.

The definitions of these four terms by their authors are:

Atomicity “It either happens or it does not” [Gra81].

Consistency “The transaction must obey legal protocols” [Gra81].

Isolation “Events within a transaction must be hidden from other transactions

running concurrently” [HR83].

Durability “once a transaction is committed, it cannot be abrogated” [Gra81].

2.4 What Is a Package Manager and What Are Package

Dependencies?

UNIX systems, and Linux systems in particular, have so-called package managers

that are used to safely install programs and libraries on a system. There are

a variety of package managers out there, differentiated by how they store meta

data internally, among other aspects. Meta data for a package can be, but is not

limited to, the package name, its version, licensing information, authors, project

website and, especially important for this master’s thesis, dependencies on other

Markus Holtermann 4

2.5 What Is a Virtual Machine and What Is a Linux Container?

packages. That last bit of meta data allows a package manager to know that to

install package A, package B needs to be installed first.

The list of available packages is stored in repositories the package manager

accesses. System package managers, such as APT1, Pacman2 and Yum3 have a local

copy of the software collection, allowing for faster queries. On the other hand,

npm4 and pip5, the package managers for Node.js and Python packages, need to

access the online software repositories each time they need to retrieve information.

Package managers keep track of which packages are installed. That way, the

installation of A will only install A if B is already installed, and there is no need

to install B again. By leveraging the meta data of the packages currently be-

ing installed and the meta data from the software repositories, package managers

can also manage updates for packages. The details on how this is achieved are

explained in chapter 6.1 – Installation, Update and Removal of Programs – Depen-

dency Problems.

2.5 What Is a Virtual Machine and What Is a Linux Container?

A Virtual machine is a computer whose hardware is simulated by a software (hyper-

visor). The hypervisor provides a mapper around the underlying physical hardware

(host) and allows to assign (parts of) the hardware capabilities to a virtual ma-

chine. That way a Linux host can be used to run multiple, possibly independent,

virtual computers.

Virtual machines are often independent of each other, thus breaking one virtual

machine does not imply that other machines on the same host are broken, too.

Linux containers such as LXC or systemd-nspawn, reuse parts of the host’s

operating system. By reducing the amount of virtualization, these approaches

allow the virtualized guests to run faster.

1https://wiki.debian.org/Apt
2https://www.archlinux.org/pacman/
3http://yum.baseurl.org/
4https://www.npmjs.com/
5https://pip.pypa.io/

Markus Holtermann 5

https://wiki.debian.org/Apt
https://www.archlinux.org/pacman/
http://yum.baseurl.org/
https://www.npmjs.com/
https://pip.pypa.io/

2.6 What Is a File System?

2.6 What Is a File System?

File systems are able to hold information about files and directories. This includes

information such as where a file or directory is stored on a hard disk, what size it

has, who the owner is and when the last access or modification happened to that

file / directory.

In distributed environments file systems can be shared across servers by using

file systems that provide network access, such as NFS.

Markus Holtermann 6

3. Related Work

3 Related Work

This chapter integrates the thesis into the thematic and historical context of other

research in configuration and system management.

3.1 Thematic Classification

As with everything in computer science, configuration management evolved over

the years. As a result, there are four major levels of configuration and system

management:

1. No systematic configuration management

2. Divergent configuration management

3. Convergent configuration management

4. Congruent configuration management

Furthermore, one needs to differentiate between manual and automated config-

uration management. This refers to the way in which the configuration is applied

on target systems.

Manual configuration management implies that an administrator is issuing com-

mands by hand. This is error prone because it involves the human error factor.

Automated configuration management, on the other hand, works autonomously

by having programs doing the recurring tasks. Once set up, the management

tools usually run recurrently. An administrator might start a configuration “run”

manually, but the actual configuration of the target systems is done automatically.

Combining both categorizations, the following matrix arises. It shows whether

or not the combinations of these orthogonal classifications make sense. For exam-

ple, there is no way of having automated configuration management when there is

no systematic configuration management:

Markus Holtermann 7

3.1 Thematic Classification

No systematic Divergent Convergent Congruent

Manual Yes Yes Yes No
Automatic No Yes Yes Yes

Table 1: Matrix for configuration management classification and manual and au-
tomatic configuration management

3.1.1 No Systematic Configuration Management

In the very early stages of IT infrastructure, there was no systematic configu-

ration management as we know it from today’s data centers. Servers were like

“Snowflakes” [Fow12], unique, non-reproducible and very hard to maintain. Ad-

ministrators connected to each server individually and applied the changes that

needed to be made. For small environments this is still a common way to main-

tain a server. The incentive for these manual changes arose from the short-term

need. The time an administrator needed to become acquainted with a certain

configuration tool was too long.

3.1.2 Divergent Configuration Management

To partly automate the deployment of projects and simplify their work, adminis-

trators often wrote their own scripts and tools. However, those scripts eventually

broke and stopped working for a variety of reasons. The scripts left systems in an

undefined state, possibly making another script fail and so on and so forth.

In their paper “Why Order Matters: Turing Equivalence in Automated Systems

Administration” [TB02, Ch 4.1] Stephen Traugott and Lance Brown describe this

behavior as “divergence”.

Divergence is characterized by the configuration of live hosts drifting

away from any desired or assumed baseline disk content. [TB02, Ch

4.1]

Markus Holtermann 8

3.1 Thematic Classification

Figure 1: Divergence [TB02, fig. 4.1.1]

This practice is still common and allows arbitrary users to conveniently install

software from the Internet. Examples of this are many installation files for Mi-

crosoft Windows programs, the installation of the “Heroku Toolbelt”6 or the ZSH

configuration “Oh My ZSH”7. The installation instructions essentially ask a user

to download a file and execute it.

Depending on the amount of human interaction and the granularity of the single

tasks, the configuration management can be seen as either manual or automatic,

there is no real distinction. For manual management with a lot of human in-

volvement, one could even classify this “configuration management” as not being

configuration management at all.

3.1.3 Convergent Configuration Management

A much more deterministic way to maintain a system follows the “convergence”

definition [TB02, Ch 4.1] by Traugott and Brown. They describe it as having

an actual state and a target state. By reducing the difference between them, the

actual state becomes more and more like the target state.

6https://toolbelt.heroku.com/
7https://github.com/robbyrussell/oh-my-zsh#basic-installation

Markus Holtermann 9

https://toolbelt.heroku.com/
https://github.com/robbyrussell/oh-my-zsh#basic-installation

3.1 Thematic Classification

Figure 2: Convergence [TB02, fig. 4.2.1]

By synchronizing configuration files across multiple divergent hosts, adminis-

trators make the hosts converge for those files. A simple solution to do this are

checklists. To reduce the human error factor, these checklists can also be auto-

mated.

Manual Configuration Management

Checklists are used extensively to make the configuration and management of

IT systems reproducible. The cloud hosting provider DigitalOcean, for example,

provides a whole set of tutorials https://www.digitalocean.com/community/

tutorials for various use cases. Guides like http://wiki.nefarius.at/linux/

der_perfekte_mail-server allow beginners to create a safe and secure email

server setup. Step-by-step instructions allow administrators to correctly perform

complex tasks.

The “BSI-100 Standards”8 by the German Federal Office for Information Secu-

rity9 are also checklists with “recommendations ... on methods, processes, proce-

dures, approaches and measures relating to information security.”.

In the end, companies that are using checklists are often also standardizing those

processes to fit Information Technology Infrastructure Library (ITIL) requirements

and allow ITIL certification. For the topic of this master’s thesis, checklists are

not relevant and will therefore not be taken into account.

8https://www.bsi.bund.de/EN/Publications/BSIStandards/BSIStandards_node.html
9Bundesamt für Sicherheit in der Informationstechnik (BSI)

Markus Holtermann 10

https://www.digitalocean.com/community/tutorials
https://www.digitalocean.com/community/tutorials
http://wiki.nefarius.at/linux/der_perfekte_mail-server
http://wiki.nefarius.at/linux/der_perfekte_mail-server
https://www.bsi.bund.de/EN/Public ations/BSIStandards/BSIStandards_node.html

3.1 Thematic Classification

Automated Configuration Management

In 1998, Mark Burgess published the article Computer Immunology [Bur98]. In

it, he proposes the idea of having tools in IT environments that behave like the

human immune system and provide some kind of self-healing capabilities.

Burgess elaborates that the technique the human immune system uses to train

itself to defend against threats is not possible in computer systems. The human

body uses millions of cells that randomly check for threatening cells or molecules

based on not only what the body has learned in the past but also on (random)

mutations. Although training computer systems to recognize patterns is generally

possible using e.g. neuronal nets, this would simply not be possible in the same

way the human body does it:

Testing code at random places in random ways is hardly efficient, and

while it might work with huge numbers ... in the body, it is not likely

to be a useful idea ... Even the smallest functioning immune system

... consists of 106 lymphocytes, which is several orders of magnitude

greater than any computer system. [Bur98, P. 291]

His idea already describes that there should be tools to automate configuration

and system management. In fact, he developed “CFEngine” five years prior to this

paper [Bur]. It provides automated configuration management but no “healing”

features. However, the benefit of automation eliminates the human error factor,

which eventually leads to more stable systems and predictable behavior.

The downside of automated configuration management, either manual or di-

vergent, is the speed. While the scripts or installers for divergent systems simply

perform one task after the other, tools for convergent systems need to gather the

state of a target system has, before it can perform any actions.

An important behavior of convergent configuration management is the way in

which parts of a system are excluded from being managed by the management

tool. By not specifying anything about a resource, the management tool does not

know the resource and thus cannot maintain it.

Markus Holtermann 11

3.1 Thematic Classification

3.1.4 Congruent Configuration Management

The fourth level of configuration management is “congruence” [TB02, Ch 4.3].

Systems that essentially do not deviate more and more from the target system

over time are in exactly the state a system administrator wants them to be.

This effectively gives an administrator full control over a system and full knowl-

edge of the state of a system, which should be the goal of every system adminis-

trator according to Traugott and Brown:

We recognize that congruence may be the only acceptable technique for

managing life-critical systems infrastructures, [...] [TB02, Ch 4.3]

Figure 3: Congruence [TB02, fig. 4.3.1]

Unlike convergent configuration management, congruent systems have every

resource defined. This makes it impossible to have changeable data. Today’s

configuration and management systems work around this limitation by allowing

integration of e.g. external storage systems that themselves are convergent.

The Virtual Panel on Immutable Infrastructure [PFBH14] by InfoQ outlines the

opinions of the three experienced operations engineers Chad Fowler, CTO of Wun-

derlist, Mark Burgess, CTO and founder of CFEngine and Mitchell Hashimoto,

CEO of HashiCorp, creator of Vagrant. The discussion deals with the question if

immutable infrastructure “is a step forward or backwards in effective infrastructure

management” [PFBH14].

While Burgess favors mutable infrastructure (hardly surprising due to his in-

volvement in CFEngine) and describes the term “immutable” as a “misnomer”,

Markus Holtermann 12

3.2 Historical Connections

Fowler defends immutable infrastructure, although he admits that his company

6Wunderkinder still relies on “‘cheats’ with immutable infrastructure”. Hashi-

moto’s view on immutable infrastructure straddles those of Burgess and Fowler.

While Vagrant can be used for immutable infrastructure, it can also be used only

for the initial provisioning of a system which then becomes a mutable system while

being maintained with CFEngine.

Burgess argues that it is not possible to have an immutable server that gets

its IP address via DHCP because this would be a change which is not possible by

definition of immutability. Instead “we should focus on ... what behaviours ... we

want hosts to exhibit on a continuous basis. Or, in my language, what promises

should the infrastructure be able to keep?” [PFBH14, Question 1]

This thesis follows Burgess’ opinion on mutable infrastructure. Immutable in-

frastructure, as explained later in this chapter, is not considered as part of the

upcoming research. Immutable systems will not be considered because rolling

back changes in those environments implies rebuilding the entire system. The

newly build images will again be immutable.

3.2 Historical Connections

One of the first published papers on configuration management is from 1993

when Mark Burgess wrote about version 2 of his configuration management tool

CFEngine [Bur93]: CFEngine V2.0: A network configuration tool. “cfengine is

intended first and foremost to be run as a batch job ...” [Bur93, ch. 1]. Some of

the tasks that can be done by CFEngine include the “management of protection

and ownership of files on any filesystem” and “autoconfiguration of the local area

network device interface, netmask and broadcast addresses, as in ifconfig” [Bur93,

ch. 3]. CFEngine uses a single file that describes the setup of all machines in a ma-

chine park [Bur93, ch. 1]. Therefore, CFEngine is an automated and convergent

configuration management tool.

In 1994, Paul Anderson published his paper “Towards a High-Level Machine

Markus Holtermann 13

3.2 Historical Connections

Configuration System” [And94] at LISA ’9410. He describes the tool “lcfg” (“local

configuration”) that uses a central configuration database that has “all information

that is necessary to distinguish one machine from another”. The managed systems

receive their configuration during initial setup and each time the system or one of

its subsystems are restarted.

A few years later, in 1998, Steve Traugott and Joel Huddleston published their

paper “Bootstrapping an Infrastructure” [TH98]. They describe a “model [that]

was developed during the course of four years of mission-critical rollouts and ad-

ministration of global financial trading floors. The typical infrastructure size was

300-1000 machines, totaling about 15,000 hosts.” [TH98, Abstract]. In 16 steps

they explain how they “were able to make a true migration from ‘systems admin-

istrators’ to ‘infrastructure engineers’” [TH98, step 2]. The important steps for

the master’s thesis that will be summarized here are “Step 1: Version Control”

and “Step 2: Gold Server”.

By using the version control tool CVS 11 Traugott and Huddleston found that

they “were able to do rollbacks or rebuilds of damaged servers and other compo-

nents.” [TH98, ch. 1]. This was a crucial discovery that allowed them to “actually

[be able to] destroy entire server farms and rebuild them with relative impunity

during the course of development, moves, or disaster recovery. This also made it

much easier to roll back from undesired changes” [TH98, ch. 1].

Setting up a Gold Server – which is like a master server in today’s terminology

– they “[made their] changes reproducible, recoverable, traceable” [TH98, ch. 2].

By design, the gold server provides information to the clients but never pushes any

information to them. Instead the clients pull updates. They decided to use this

approach due to the odds that “if you have more than 30 target hosts one of them

will be down at any given time. Maintaining the list of commissioned machines

becomes a nightmare” [TH98, Push vs. Pull].

108th USENIX Conference on System Administration
11Concurrent Versions System, http://www.cyclic.com/cvs/info.html

Markus Holtermann 14

http://www.cyclic.com/cvs/info.html

3.2 Historical Connections

In the beginning of 2005, Puppet Labs, founded by Luke Kanies12, started work-

ing on “Puppet”13. It is an agent-based configuration and system management tool

that can achieve convergent system states. “Puppet” is one of the most commonly

used configuration and system management tools in today’s data centers according

to Stephen O’Grady on RedMonk14.

In January 2009, “Chef”, founded by Jesse Robbins among others15, announced

[Rob09] their “systems integration framework” which is based on “Puppet”. Due

to its similarity to “Puppet” it holds many similar properties, such as being agent-

based and providing convergent system states.

In addition to the aforementioned tools, “Ansible” and “Salt” are well known

nowadays. They are inherently different to those tools mentioned before because

they are agent-less. Therefore they implement – contrary to the recommendations

of [TH98, Push vs. Pull] – push maintenance. This, of course, comes with the

downside of having unreachable machines during a particular configuration run.

However, not requiring agents on the target systems allows Ansible and Salt to

maintain configuration for systems that are not capable of running those agents,

such as managed switches.

A simple way to set up congruent systems and immutable infrastructure was

possible when “dotCloud, a PaaS provider, ... open sourced Docker” [Avr13].

“Docker” uses modern virtualization techniques underneath an abstraction layer.

The abstraction layer is a configuration file called a Dockerfile16. It is used to define

a system layout, that is, which packages need to be installed, which network ports

are exposed, etc. Docker uses libcontainer or Linux kernel features such as

LinuX Containers (LXCs) to avoid requiring running the entire system.

12https://www.linkedin.com/in/lukekanies. Visited Feb 7, 2015
13Puppet’s first public commit, Luke Kanies, Apr 13, 2005, https://github.com/puppetlabs/

puppet/commit/54e9b5e3561977ea063417da12c46aad2a4c1332
14 http://redmonk.com/sogrady/2013/12/06/configuration-management-2013/, Visited

April 19, 2015.
15“Company Overview of Chef, Inc.”, Bloomberg Businessweek, http://investing.

businessweek.com/research/stocks/private/snapshot.asp?privcapId=58274057. Vis-
ited Feb 10, 2015

16https://docs.docker.com/reference/builder/

Markus Holtermann 15

https://www.linkedin.com/in/lukekanies
https://github.com/puppetlabs/puppet/commit/54e9b5e3561977ea063417da12c46aad2a4c1332
https://github.com/puppetlabs/puppet/commit/54e9b5e3561977ea063417da12c46aad2a4c1332
http://redmonk.com/sogrady/2013/12/06/configuration-management-2013/
http://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=58274057
http://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=58274057
https://docs.docker.com/reference/builder/

3.2 Historical Connections

Figure 4: Illustration of the interfaces Docker uses to access virtualization features
of the Linux kernel [The14a]

Another congruent system that has gained more and more traction is “Rocket”

by CoreOS17. The team developed it because Docker became more of a “Docker

platform” and not only a container format.

A “unique approach to package and configuration management” is the “NixOS”

Linux distribution18. It can be seen as a combination of a convergent and a con-

gruent system. Being able to make changes without the need to rebuild the entire

system make NixOS a convergent system. Having consistent states that will never

be modified, on the other hand, allows for stable rollback operations and gives the

system congruent behavior.

17https://coreos.com/blog/rocket/
18http://nixos.org/

Markus Holtermann 16

https://coreos.com/blog/rocket/
http://nixos.org/

4. Background

4 Background

The knowledge provided in chapter 2 – Basics only covers the information that

non-system administrators need to understand. This chapter gives additional, in

depth knowledge on topics every reader of this thesis needs to understand and be

aware of.

4.1 Configuration Changes

In order to propose ideas of how to rollback or undo a modification done by a

configuration management tool, it needs to be clear what a change is and how

multiple changes relate to each other.

A change can be defined as the difference between two descriptions of statuses

of software and virtualized hardware states, such as software installation, software

configuration (e.g. IP address routing, mounted directories), hardware configura-

tion (e.g. bound IP addresses), amount and type of virtual hardware (e.g. CPUs,

memory, disk storage). It reflects what a configuration and system management

tool needs to do to turn the configuration and setup of a target host into what is

defined by the new description.

4.2 Differences Between Local and Distributed Configuration

Changes

When looking into configuration management changes, one has to distinguish be-

tween local changes and distributed changes:

Local configuration changes are changes that do not influence other systems,

neither directly nor indirectly. Those changes could be, for example, running a

different kernel version or changing the disk size.

Markus Holtermann 17

4.3 Configuration and System Management Tools

Distributed configuration changes, on the other hand, are changes that have a

direct or indirect impact on other systems. An example would be changing an IP

address or the port a specific service listens to.

There are no distributed changes in non-distributed systems simply due to the

fact that local systems19 are systems that do not interact with other systems.

However, whether or not the reverse holds true is not immediately obvious. De-

pending on the level of abstraction, local changes (to a single “node” or multiple

“nodes”) in a distributed system may or may not influence the entire system in

theory or in practice. While the above examples of running a different kernel ver-

sion or changing the disk size do not influence other components of the distributed

system in theory, changing a kernel in practice often implies performance, timing

and feature changes that could result in other systems behaving differently. If

changing the disk size includes replacing the hard drive, then the I/O performance

will likely change.

Distributed configuration changes in distributed systems obviously imply dif-

ferent behavior between two or more nodes: if the port the database application

is listening on changes, all applications that access the database must change the

port to connect to as well.

4.3 Configuration and System Management Tools

Configuration and system management tools are used to keep the configuration files

and resource settings on servers in a predefined state. Furthermore, they are used

to keep the configuration and settings on multiple servers in sync. While computer

systems’ configuration will diverge without usage of configuration management

software, as explained by Traugott and Brown [TB02], such software can help

turn a divergent system into a convergent one, which at some point can become a

congruent system.

Comparing convergent management tools (as defined in chapter 3.1.3 – Convergent

19In this context “non-distributed systems” and “local systems” are used conterminously for
clarification.

Markus Holtermann 18

4.4 Problems to Consider

Configuration Management) like Chef, Puppet and Ansible shows, however, that

they are quite similar in the way they represent a system’s state: they do not

actually store the differences between states like “install software x” but opt for a

global state that is later compared to the actual state of a system.

This behavior results in a congruent system when bootstrapping a new system.

When working with mutable systems, however, it is inevitable that it leads to

some kind of divergence, for example, a program is installed and then removed.

On a new system, the global state directly describes that this program must not

be installed.

An example project that stores the actual tasks to be done between state

changes is the database migrations framework of the Django web framework, al-

though it is not a system management but database schema management tool.

The operations are the key; they are a set of declarative instructions

which tell Django what schema changes need to be made. Django scans

them and builds an in-memory representation of all of the schema

changes to all apps, and uses this to generate the SQL which makes

the schema changes. [Dja15]

4.4 Problems to Consider

A common problem in distributed systems is the lack of a global state. Consider

the example of a system receiving a status update. By the time the system receives

the update, the status on the sending system might have already changed again20.

In order to work around this issue, configuration and system management tools

have to be aware of the problem and create applicable solutions that provide a

certain level of consistency.

Aside from that assumption, this thesis will cover different problems that occur

when rolling back changes. These problems can emerge for different reasons, one

20This is similar to Heisenberg’s Uncertainty Principle from quantum mechanics which asserts
that the precision of knowing the position and momentum of an object simultaneously is
limited.

Markus Holtermann 19

4.5 System Stability and Security

being that later changes depend on the change that is about to be rolled back.

Most problems then need special handling that takes other tasks into account in

order to proceed with a successful rollback.

A few things that will be explained in depth in chapter 5 – Resource Classi-

fication and Utilization are situations related to the installation, update and re-

moval of programs (5.3.1 – Installation, Update and Removal of Programs), how to

handle the removal of a user (5.3.2 – Modification of User Accounts) and how to

safely remove files and directories where mounted file systems are involved (5.3.3 –

Modifications Involving the File System).

Furthermore, problems that occur when changes affect multiple resources, or

when the order in which changes are applied is important, will be discussed in

chapters 5.3.4 – Network Setup Modifications and 5.3.5 – Ordering of Changes in

Distributed Systems.

By taking the entire state into account during the “runs” of the configuration

and system management tools, these tools can guarantee that all the facts it knows

about the system are configured in the way they should be. On the downside, those

runs can easily take minutes until all servers have been completed. In contrast,

knowing the different operations between states and the last applied state, as in

Django’s migration framework, allows much faster runs when the last applied state

is known.This strategy has the drawback of not being able to ensure a congruent

system but still yields convergent systems.

4.5 System Stability and Security

System Stability

The term system stability is often used in a colloquial fashion when it describes a

user’s experience of how often a program or operating system stops working. This

could be as simple as the “Program is not responding.” error message in Microsoft

Windows or as bad as a kernel panic with immediate reboot, in each case giving no

indication of what went wrong. In a regular user’s understanding, system stability

Markus Holtermann 20

4.5 System Stability and Security

is solely based on their experience, feelings, and expectations, and not guided by

any numbers or measurements.

When looking at the system stability from a technical and mathematical per-

spective, it defines the percentage of time a system works without crashing and

how often a system has been used at all:

r =
s

s + f
f, s ∈ N (1)

lim
s→∞
f→0

s

s + f
= 1 stable system (2)

lim
s→0
f→∞

s

s + f
= 0 unstable system (3)

where s is the number of successful usages and f defines the amount of crashes.

The higher s and the lower f , the more stable a system is. A completely stable

system has a stability ratio of 1. A high value for f and a low value for s on the

other hand, describes a unstable system.

Looking at Jim Grey’s “Why Do Computers Stop and What Can Be Done About

It?” [Gra85, p. 3], the formula defined above is the same as the formula describing

the availability based on the Mean Time Between Failure (MTBF) and Mean Time

To Repair (MTTR):

Availability =
MTBF

MTBF + MTTR
(4)

MTBF is effectively the time a system is operational and stable (s), and MTTR

the time a system is unstable or faulty (f).

System Security

Unlike system stability, system security does not concern the usage experience of

a system but relates to the security of of the data provided or used by the system.

Markus Holtermann 21

4.5 System Stability and Security

According to A Dictionary of Computing by the Oxford University Press,

[an] (operating) system is responsible for controlling access to system

resources, which will include sensitive data. The system must there-

fore include a certain amount of protection for such data, and must

in turn control access to those parts of the system that administer this

protection. System security is concerned with all aspects of these ar-

rangements. [Dai04]

In other words, system security, or in particular computer security, maintains

CIA:

• Confidentiality by preventing unauthorized disclosure of information.

• Integrity by preventing unauthorized modification of information.

• Availability by preventing unauthorized withholding of information.

Data

(a) Confidentiality

Data

(b) Integrity

Data

(c) Availability

Figure 5: Schematic representation of computer security attributes [Fel13]

This chapter introduced the ideas behind configuration and system management

tools, how they work in general and what problems occur when they are used

in distributed environments. With the explanation of mutable and immutable

infrastructure and the knowledge of what system stability and security is, the

next chapter will go into how different kinds of changes can be handled.

Markus Holtermann 22

5. Resource Classification and Utilization

5 Resource Classification and Utilization

Following the introduction to configuration and system management tools, the

thesis will continue with a detailed differentiation of types of configuration changes.

The chapter will state which general rules one should consider in order to make

rolling back changes possible and finish with a set of actual use cases.

5.1 Classification of IT Resources

This section defines a taxonomy to classify resources in IT infrastructure. If a

resource is managed by a configuration or system management tool, the operations

needed to rollback a resource to a previous state can be derived from the rules

generated from the taxonomy. The classification is furthermore intended to be

used to create rules for operations that are not considered as part of this thesis.

Hence the taxonomy is more generic than would be needed to describe only the

considered changes.

Accessibility

The accessibility of a resource defines which permissions regular users have to

that resource and which permissions are limited to administrators. A restricted

resource might allow usage permissions to regular users while management access

is only allowed for privileged users. Resources that are only accessible by a subset

of all regular users are also considered restricted, although the respective users

could have all permissions. Unrestricted resources can be used in any way by

all users.

Based on this definition, a network interface is an example of a restricted re-

source. Regular users can use it, but the ability to manage the interface remains

restricted to root or a set of administrators.

Markus Holtermann 23

5.1 Classification of IT Resources

Figure 6: Taxonomy for resources in IT environments

Markus Holtermann 24

5.1 Classification of IT Resources

Capacity

Even though many resources in IT environments are almost unlimited, admin-

istrators still need to consider the capacity of limited resources. Anything

that can be generated or assigned on the fly can be considered unlimited. This

could be SSL / TLS certificates, persistent storage or memory of a virtual ma-

chine or IPv6 addresses. On the other hand, UNIX user IDs (originally limited to

215−1 = 32767), IPv4 addresses (due to their widespread use) or the computation

time of a CPU should be considered limited in systems.

Changeability

The changeability of resources can have serious impact on the availability of

a system setup. When a resource is changed online, there are no interruptions

of other resources. The changes to the resource are applied while the remaining

resources of the system are regularly working. Conversely, an offline change

requires a service interruption. This could be a kernel update or a changing of the

number of CPUs. Changing a single service on a system can happen during the

system runtime and may only require a service restart.

Identity

With security considerations in mind, resources can provide some kind of iden-

tity in which case they are identity establishing while other resources are

identity free. Resources that provide identities are e.g. SSL / TLS certificates,

IP addresses, user IDs, usernames or email addresses. Other resources, such as a

CPU or a software, are identity free.

Policy

The existence of a resource can be dependent on outside information that is not

handled by configuration and system management tools. In this case, the resource

Markus Holtermann 25

5.2 Rules Derived From the Taxonomy

is policy-regulated. This is often seen in corporate environments where the

existence of a user account is defined by the user’s employment status. For email

providers, the existence of an email address could e.g. be subject to the payment

status of a user’s account. Resources that don’t rely on outside information are

policy-free.

Recoverability

Since every computer system fails at some point21, the recoverability of re-

sources is important in order to minimize the risk of data loss or service interrup-

tion. Basically all files that are not modified by a third party, that is, only changed

by the package manager or the configuration management tool, can be considered

recoverable by a program. Files that are part of a working backup strategy

are recoverable from a backup. Files that are neither auto-generated nor

part of a backup are lost during a crash and are thus unrecoverable.

Reversibility

The reversibility of a resource is particularly important with regards to the

topic of this master’s thesis. If a resource is not reversible, the change introducing

the resource cannot be (automatically) undone. An example could be removing

user data that is unrecoverable. Unless the user itself has a way to reconstruct the

data, removing it is not reversible.

5.2 Rules Derived From the Taxonomy

Accessibility

Denying users or groups a certain access in a forwards change reduces the risk

of exposing that resource. This comes with the downside that programs running

21It is practically impossible to write software that does not have bugs.

Markus Holtermann 26

5.2 Rules Derived From the Taxonomy

with the permissions of previously permitted users might stop working and fail

with “Permission denied” errors when trying to access the resource.

Increasing the access level or the set of users that have access to a resource

increases the probability of exposure of sensitive data. If resources contain sensitive

data this is likely to be known beforehand. Thus this change is unlikely to occur

except for intended changes.

However, rolling back a permission change or increasing the set of users having

access to a resources can often result in exposure of secret information. This is

especially true when granting access to more users. Furthermore, files may not have

been supposed to be accessible by those users in the first place or the resources’

confidentiality may not have been assured before.

Rule 1: Be careful when changing resource accessibility

When changing the permissions or the set of users that have access

to a resource, the resource’s confidentiality, integrity and availability

must be re-evaluated based on its content and use case.

Capacity

There are a lot of resources in today’s IT environments that are still limited to a

maximum number of items. One of the problems larger IT data centers are faced

with is the lack of free IPv4 addresses for public use22.

Although a limited resource may not be in use at a given time, this does not

imply it can be used for another service. When deallocating the resource and

putting it back into a pool of unused resources, the resource can be used again for

a different service. However, rolling back the deallocation then leads to problems

due to an unavailable resource.

22According to the IANA IPv4 Special-Purpose Address Registry [IET14], about 7.55% of all
IPv4 addresses are reserved and should not be publicly routable.

Markus Holtermann 27

5.2 Rules Derived From the Taxonomy

Rule 2: Be careful when reusing limited resources

A resource must only be reused once all references, including historic

ones, to it are removed. Reusing a resource with historic references

must mark the historic changes including the references as not re-

versible.

Depending on how user accounts are managed for a larger amount of users, the

original restriction of UNIX user IDs to a total of 215 = 32768 (including the root

user) without duplicating the ID, could pose a problem. Newer UNIX or UNIX-like

systems allow up to 232 user IDs. The concrete limit can be found by looking at

the type definition for UID T TYPE in /usr/include/bits/typesizes.h which

mostly corresponds to U32 TYPE. This in turn is defined as unsigned int in

/usr/include/bits/types.h. /usr/include/limits.h holds the definition of

UINT MAX which is defined as 4294967295U on a 32 and 64 bit GNU/Linux. Thus

this particular restriction is not a problem anymore.

Changeability

Categorizing the various components of a modern IT system, one can see three

different situations with respect to a service’s or file’s lifetime as described above

with the keyword changeability. While updating a PHP application can happen

while the web server is running and does not require a restart of the underlying

PHP interpreter, a WSGI container running a Python web application needs to

be restarted. The key difference is the availability of the respective application:

While the PHP application might be unavailable during the time the new file is

written but mostly feels like instantaneously being updated, the restart of the

Python application needs a short time to boot-up again.

Another example that describes a change during system runtime can be an

update of a database application: the database and all services depending on its

availability23 will not work. On the other hand, services that do not depend on

the database or any of its dependents, e.g. a DNS service, will continue working.

23Assuming there are is no replication set up or the clients are not configured to fall back to the
replications.

Markus Holtermann 28

5.2 Rules Derived From the Taxonomy

Rule 3: Estimate downtime and check dependencies

Changing data files, configuration files or the respective programs

themselves requires knowledge of how long the system or component

will be unavailable as well as a careful dependency checking to list

other services that will be affected.

Identity

In order to restore services after a system crash, backups are made. These backups

have to be in a working state in order to prevent misbehaving systems after a

successful restore. However, if these backups include identifying resources, the

whole backup needs to be protected. The access to a backup should only be

granted to those who can see all included information on the live system as well.

If a backup e.g. includes the file /etc/shadow24, only users with root access on

the respective server should be able to access the backup.

Rule 4: Keep identifying resources secret

Keep identifying information in a separate backup that can be applied

back after the “main” backup has been applied, to minimize the risk

to expose secret data.

As soon as an identifying resource is not in use anymore, this resource should

be invalidated and further and future usage should be prevented. For SSL /

TLS certificates this would imply putting them on CRLs and e.g. publishing

the revocation information via OCSP responders. Email addresses should not be

reused but marked as “not available anymore” to prevent a second owner gaining

access to resources the first owner had access to.

Similar to the deallocation of limited resources, one has to consider whether

revoking an identifying resource is an option. If the resource is still inside a

backup, where it might be retrieved from to get a service running again, revoking

that resource can lead to problems when a service is restored from the backup.

24The file containing all user account passwords on UNIX system

Markus Holtermann 29

5.2 Rules Derived From the Taxonomy

Rule 5: Revoke identifying resources

As soon as an identifying resource is not in use anymore, neither di-

rectly nor as part of a backup, the resource should be revoked and

access and future usage should be declined. Resources with limited

capacity may be reused if need be.

Identifying resources must not exist more than once by the very nature of

being unique in a certain context. In case these contexts overlap due to some

environmental changes resources may not be unique anymore. Thus one should

make sure to make identifying resources globally unique.

Rule 6: Use environment-wide unique identifiers

In order to prevent possible problems with clashing identifiers at a later

point in time, make sure identifiers are environment-wide unique from

the beginning.

Policy

Policy-free resources should exist upon the question “Is the resource used?”.

If the answer is “yes” the resource obviously has to stay and can therefore not be

rolled back. If the response to the question is “no” the resource can be removed,

though. For policy-regulated resources, however, the “outside world” defines

whether the resource may exist or must be removed. The question would rather

be “Is the resource allowed to exist?”. In case a resource must not exist, all other

resources depending on it must either be removed or be reassigned to another

resource providing the service.

Markus Holtermann 30

5.2 Rules Derived From the Taxonomy

Rule 7: Review depending resources

When removing resources all depending resources are either deleted

or reassigned. The deletion should only happen with recoverable re-

sources according to Rule 9: Prune files and folders with package man-

ager and Rule 10: Remove files managed by a configuration and system

management tool

Since removing policy-regulated accounts always comes with the risk of acci-

dentally removing too much data, resources that are independent of a particular

employee, e.g. a database with data of a company’s service offering, should be

bound to its own role account which will have its own policy.

Rule 8: Bind production resources to role accounts

To reduce the chance of accidental removal of organizational data,

bind resources to role accounts with their own policies. This way the

removal of a departing employee’s account does not jeopardize that

data.

Recoverability

Before one should remove files their recoverability needs to be evaluated. Build

upon the above explanation about recoverability, the following rule for files and

folders managed by the system package manager can derived:

Rule 9: Prune files and folders with package manager

Files and folder structures that are created by the system’s package

manager can be removed if they match the files or folders from their

respective package and are thus not modified. For folder structures,

the additional requirement that these folders must be empty and not

contain user data applies.

Markus Holtermann 31

5.2 Rules Derived From the Taxonomy

Files that are handled by a configuration and system management tool can also

be removed if they are not modified. If these files were modified, one already has

a divergent system which should not be the case in the first place. Furthermore,

these files are generally either copied to the system or generated on-the-fly by the

configuration management tool based on the information the tool knows about the

system.

Rule 10: Remove files managed by a configuration and system

management tool

Files that are managed by a configuration and system management

tool can be considered unmodified as the next run of that tool would

override the files content and permissions anyway. Defining the absence

of a file effectively will remove the file from the system.

All files that are part of a backup could be recovered if they are deleted. De-

pending on the size of the backups and whether they are full backups or differential

backups, restoring from a backup can take a long time, however, so it’s better not

to make a mistake which requires restoring from a backup.

Unrecoverable files cannot be restored once they are deleted25. Therefore their

removal must be cautiously planned and a removal of files not to be removed must

be prevented.

This also indicates that file removal – or data removal in general – of unrecov-

erable resources is not reversible.

Reversibility

The reverse operation of a remove operation can also be ambiguous: a software that

is being uninstalled can either be marked as “never been installed” or “uninstalled”

in the database of the underlying package manager.

25This does not consider the usage of forensic software to reconstruct removed files by recon-
structing the appropriate inodes on a file system, as this is not part of this thesis.

Markus Holtermann 32

5.3 Use Cases of Configuration and System Management Tools

Rule 11: Check reversibility of resource changes and specify

outcome

Changes made to resources can be one-way operations and thus do

not have an unambiguous way to undo, in which case the result of the

reverse operation must be defined.

5.3 Use Cases of Configuration and System Management Tools

The variety of tasks that configuration and system management tools were orig-

inally developed for is rather small compared to what those tools are used for in

today’s IT infrastructure. It is not just the management of users or the list of

installed programs anymore, but includes more complex processes like generating

SSL / TLS certificates, moving virtual machines between nodes while they are still

online or deploying applications from a source code repository.

Based on the classification of IT resources in chapter 5.1 and under due consid-

eration of the rules developed in chapter 5.2, this chapter will highlight common

use cases of these tools in modern IT environments. Along the different use cases

and their implementation, this chapter will also point out the problems arising

when a rollback operation happens.

5.3.1 Installation, Update and Removal of Programs

Program Installation

Installing new programs or libraries on a system, in either local or distributed envi-

ronments, usually does not affect other parts of the system. However, especially in

UNIX environments, installing additional libraries often allows other programs to

expand their capabilities by dynamically loading these libraries at startup. While

these additional features can create an unexpected behavior in another system, this

principle follows The UNIX Philosophy by Mike Gancarz “Make Each Program

Do One Thing Well” [Gan95, Tenet 2, p 19].

Markus Holtermann 33

5.3 Use Cases of Configuration and System Management Tools

In terms of reversibility, a program installation mostly has a direct affect on

other resources in the environment. If the program is required by other resources,

these resources will change their behavior and could stop working entirely until

the program is installed again.

Program Update

Contrary to the installation of a program, updating to a newer version of a pro-

gram may result in serious behavioral changes. If a program follows the Semantic

Versioning concept [PW], updates changing the major version number introduce

backwards incompatible changes and thus often lead to severe problems in a pro-

duction environment if not explicitly taken care of. Patch releases, on the other

hand, should be fully backwards compatible with the previous minor release.

A program downgrade, as the reverse operation for an update, follows the same

rules as the update process. Depending on the versions the process should not

have any influence on other resources, or needs to be taken care of explicitly.

Program Removal

Unlike the program installation, a program removal implies that a certain func-

tionality is not available anymore. Although this seems obvious, the changes to

the system along with removing a library often result in errors.

One needs to take into account when possible problems may manifest them-

selves. Programs dynamically linked to shared objects, that only load them when

available, still have that library in memory as long as the process is running. After

a restart of the program this library is not loaded anymore and a change in the be-

havior of that program is the result. On the other hand, programs that explicitly

invoke another program that has just been uninstalled will fail26.

Installing new programs also often adds some default configuration files. These

26That is, if the calling program does not catch the error and continues working as if nothing
happened, like when the called program would still exist.

Markus Holtermann 34

5.3 Use Cases of Configuration and System Management Tools

files will remain on the disk when a program is removed if they have been modified

and thus are not identical to the files from the package manager. Hence installing

a program after it has been removed before may result in different behavior than

anticipated if a preexisting configuration file is still around.

Classification Property

Accessibility Modifications of system-wide installed packages are restricted
to administrators

Capacity Unlimited; only limited by the amount of packages bundled by
the vendor

Changeability Depends on the program and might need program restart or
server reboot

Identity Free
Policy Free
Recoverability Programs and libraries are installed through a system manage-

ment tool and are therefore recoverable by program
Reversibility The reversibility is only guaranteed if all dependencies are

known

Table 2: Classification of programs / libraries installed via a system’s package man-
ager

5.3.2 Modification of User Accounts

User Creation

Creating new users on a local system is straight forward: if the user (identified by

a certain name and/or id) does not exist, create the user. Related tasks, such as

creating the user group and user’s home directory, are not considered as part of the

user creation process as they can be abstracted to their own operations. Creating

the home directory is handled in chapter 5.3.3 – Modifications Involving the File

System section Directory Modifications. The user creation would then depend on

this operation.

In distributed systems the process is more complex. If the environment has a

central user database (e.g. LDAP), the user has to be created in that database

Markus Holtermann 35

5.3 Use Cases of Configuration and System Management Tools

if it does not exist. Potential dependencies need to be resolved before and may

involve the entire environment.

If no central user database exists in a distributed system, the creation process

becomes even more complex. Two users with the same identifier on different

systems may be completely unrelated but should still be the same across a different

set of systems. As long as their identifying part is unique throughout the entire

system, this does not pose a problem. According to Rule 6: Use environment-wide

unique identifiers identifiers, should be unique in the entire environment.

As an example: there are two clients ClientA and ClientB that each have an

employee John with a user account “john”. While this account is unique on all

servers belonging to either ClientA or ClientB (but not both) the account identifier

is not unique across the entire system.

Figure 7 shows 6 servers that are divided in 3 sets (red / vertical pattern, blue /

horizontal pattern, yellow / diagonal pattern). The violet / cross pattern colored

server is part of the red and blue set. In case there are two users with the same

identity shared across the red and blue set, this will result in an identity clash on

the violet system since the two users are not distinguishable.

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Figure 7: Clashing user identities from servers 1, 2 and 5, 6 on 4 in distributed
systems without global user database.

Markus Holtermann 36

5.3 Use Cases of Configuration and System Management Tools

User Removal

When removing a user account, one has to review if the account is policy- regulated

or policy-free (see chapter 5.1 – Policy). As already elaborated above, removing a

policy-regulated account implies a removal or reassignment of dependent resources,

while removing a policy-free account must be prohibited until no other resource

depends on the account. This can also be seen by the direction of the arrows in

figure 8. They are effectively 180◦ turned, illustrating the dependency direction.

Account

SSH-LoginEmail Service 1 ... Service n

A

BA depends on B

(a) Policy-regulated

Account

SSH-LoginEmail Service 1 ... Service n

(b) Policy-free

Figure 8: Dependencies for policy-regulated and policy-free resources

Markus Holtermann 37

5.3 Use Cases of Configuration and System Management Tools

Policy-free Removing a policy-free user account, not just a permission or access

to a specific system but also the user data, is not trivial in terms of recoverability.

By the very nature of not knowing if all user data is backed up by its owner –

and thus manually recoverable by them – one needs to evaluate if the user data is

relevant to be included in backups.

Email addresses are often closely related to user names and sometimes are even

the user name with an appended domain (@example.com). Thus removing a user

account implies that the email address is not linked to a specific user account,

anymore and can be removed. When removing the account the contained emails

may have to be preserved for tax or legal reasons. This normally happens outside

the email account as part of a backup strategy.

However, since the email address is unused it could be reused by somebody else.

Reusing a previously used email address – and identifying resources in general –

raises the questions, though, if this is a good idea with respect to data privacy

protection. Especially for corporate email addresses, statutory data privacy poli-

cies may apply and have to be taken into account. Furthermore, when an email

address has been used for signing up on third party services, reusing an address

could allow the new owner to gain unprivileged access to the third party service.

Thus a full revoke according to Rule 5: Revoke identifying resources should be

considered.

Policy-regulated On the other hand, removing a policy-regulated user account

is rather deterministic in what is going to happen with resources belonging to it.

The common action is the deletion of those resources. This is fine for programs and

recoverable configuration files. However, removing a production database owned

by that user is not an option. Although the database will be backed up, the latest

updates probably occurred after the latest backup. Thus, the deletion must be

avoided. Instead the database should be reassigned to another account, following

Rule 8: Bind production resources to role accounts.

Taking both the user creation and removal process into account, the follow-

ing properties for user accounts according to the taxonomy stated above can be

Markus Holtermann 38

5.3 Use Cases of Configuration and System Management Tools

derived:

Classification Property

Accessibility Creation and deletion of user accounts is restricted to admin-
istrators; changing the password to the user itself.

Capacity Unlimited, at least on newer UNIX systems over 4 billion user
accounts can be created locally

Changeability The identifying part of identifying resources is not changeable
though additional information about a user account can be
changed without causing problems.

Identity Identity establishing
Policy Free or regulated; depending on the IT environment
Recoverability The accounts themselves are recoverable by a program; the

user’s data not necessarily.
Reversibility Reversing a user creation or removal operation is generally pos-

sible, though not recommended.

Table 3: Classification of user accounts

5.3.3 Modifications Involving the File System

File Modifications

A common use case for configuration and system management tools is the mod-

ification of configuration files and keeping these files in sync across multiple sys-

tems. Modifying a file does not only mean changing the file’s content, but also

takes changes to the owner or group and other permission attributes into account.

Hence Rule 1: Be careful when changing resource accessibility should be closely

taken care of.

When changing a file’s content, which is part of an installed package that was

installed through the system’s package manager, the package manager has to con-

sider this file user-modified and thus not delete it when removing the program.

This can eventually lead to several problems:

1. The file remains on the file system and is still there when the program is

installed again at a later time. The package manager will likely not complain

Markus Holtermann 39

5.3 Use Cases of Configuration and System Management Tools

about the pre-existing file since the file was modified by a user before. This

can then result in unexpected behavior. Instead of a default configuration,

an old configuration is loaded which might expose the system to an insecure

network and make it vulnerable.

2. Since a file the package manager is going to install already exists on the file

system but does not match the file from the package, the package manager

could bail out and prevent an installation due to a pre-existing file that does

not match the file from the package.

To prevent those problems, the configuration and system management tools

should remove the files explicitly as mentioned in Rule 10: Remove files managed

by a configuration and system management tool due to them being modified by the

management tool.

Classification Property

Accessibility Most files are readable by every user on a system; access to
configuration files is often limited to the user running the pro-
gram

Capacity Unlimited; only limited by the size of the hard drive
Changeability Online
Identity Files are normally identify free, though cryptographic files (SSL

/ TLS certification / keys, SSH keys) are likely identity estab-
lishing

Policy Mostly policy-free. Files in /etc/skel are copied to home di-
rectory of local users

Recoverability Only recoverable if files are in a backup; not guaranteed for
user data

Reversibility Only reversible when files are managed by a configuration man-
agement tool or the package manager

Table 4: Classification of files

Directory Modifications

When modifying directory permissions, the files and folders contained inside that

directory potentially get exposed to a wider group of people. Thus following Rule 1:

Markus Holtermann 40

5.3 Use Cases of Configuration and System Management Tools

Be careful when changing resource accessibility is required.

Recursive modifications of a directory have always to be handled with care and

can lead to serious damage of the directory structure and may even result in data

loss. If a directory is a mount point itself or if any of its subdirectories are mount

points of currently mounted devices, recursive operations should be avoided.

Classification Property

Accessibility Most directories are readable by every user on a system; access
to the home directories is often limited to the respective owner

Capacity Unlimited; only limited by the size of the hard drive
Changeability Online
Identity Free
Policy Free
Recoverability Only recoverable if in a backup; not guaranteed for user data
Reversibility Only reversible when managed by a configuration management

tool or the package manager

Table 5: Classification of directories

Directory Mounting

Mount points are defined in the file /etc/fstab. Configuration and system man-

agement tools modify this file to permanently define mount points of local devices

and remote resources into the root file system. Unless specified otherwise, the

mount points are automatically mounted upon system boot. Especially for remote

resources, their changeability has to be kept in mind. In case of e.g. a NFS stor-

age server, one has to follow Rule 3: Estimate downtime and check dependencies.

Before updating the server one should unmount the NFS shares on all servers in

order to prevent access locks. Otherwise applications trying to read or write from

the remote file system could hang without timing out.

When a directory is going to be mounted at a later point after system start

and thus all services are already running, the services depending on the not yet

mounted directory must not be started automatically. Otherwise they can end up

using the file system containing the mount point directory. For backup processes

Markus Holtermann 41

5.3 Use Cases of Configuration and System Management Tools

this can especially be a problem when, due to missing previous backup data, a full

backup is performed filling the remaining disk space.

Directory Unmounting

Unmounting a directory is only possible if no running process is accessing any files

inside that mount point. Otherwise the unmount process fails. Periodic tasks,

however, that are running a main process and spawn subprocesses to perform the

actual tasks, either in random intervals or on a regular basis, potentially suffer

from a problem mentioned above: If a mount point is unmounted after the main

process has been started but before a subprocess starts (again), the subprocess

will try to access files and directories from the mount point’s file system and not

from the previously mounted device or remote resource. Thus a e.g. backup job

would write to the main file system and not to the NFS. The server’s hard drive

will fill up and eventually the backup process will fail once no space is left on the

device.

A possible work around to counteract the problem could be monitoring access

requests to mounted resources and only unmount them once no access happened

for the interval of regular tasks or the maximum interval between two randomly

scheduled tasks.

5.3.4 Network Setup Modifications

Among assuring the installation state for programs, the existence or absence of user

accounts and keeping track of file content and file permissions, configuration and

system management tools are heavily used to manage the network setup of single

systems and entire data centers. This includes assigning, changing and releasing

IP addresses on a server as well as updating its routing setup.

Before adding an IP address to a server, one has to make sure the IP address is

not in use. Otherwise the routing of incoming and outgoing packages to and from

that server is not guaranteed to work. Depending on the actual setup, adding an

IP address can even make other servers unavailable.

Markus Holtermann 42

5.3 Use Cases of Configuration and System Management Tools

Unlike adding an IP address, removing one does not only come with the same

risk of rendering (parts of) the network unavailable. It will also make other services

depending on a particular host to be unavailable.

Classification Property

Accessibility Changes to network interfaces is limited to administrators
Capacity Limited; there is a physical limit of devices per host though

virtual interfaces can be created as on demand
Changeability Changing an IP address or routing configuration can happen

during the system runtime; no reboot required
Identity IP addresses or MAC addresses are identity establishing
Policy Free
Recoverability The setup is performed by configuration and system manage-

ment tools and thus recoverable
Reversibility Depends on the entire network setup

Table 6: Classification of network interfaces

5.3.5 Ordering of Changes in Distributed Systems

All use cases explained above are similar in that the actual changes required have

only local affects. In larger environments, however it is not uncommon to have

dependencies between services running on otherwise unrelated dedicated hosts.

As an example, a proxy connects to a server on port 8000. For some reason the

port the server listens on must be changed to 8080. Recalling that changes can

never be guaranteed to happen synchronously, there are two approaches to achieve

the change:

1. Change the proxy settings to point to the new port, restart the proxy, change

the port the server listens on, restart the server

2. Change the port the server listens on, restart the server, change the proxy

settings to point to the new port, restart the proxy

Both approaches inevitably result in timeouts of requests as the proxy either

tries to connect to a port that is not in use yet (1) or not in use anymore (2).

Markus Holtermann 43

5.3 Use Cases of Configuration and System Management Tools

Depending on the uptime requirements of the service, this may not be acceptable.

This chapter provided seven classification criteria and formulated 11 rules which

were combined with several use cases to show some problems system administrators

have to take care of. The next chapter will work on these use cases and provide

examples how to solve them.

Markus Holtermann 44

6. Maintaining System Stability and Security

6 Maintaining System Stability and Security

Based on the use cases given in chapter 5.3 – Use Cases of Configuration and Sys-

tem Management Tools, this part of the thesis will follow the rules compiled in

5.2 – Rules Derived From the Taxonomy from the IT resource taxonomy to design

and evaluate methods to maintain system stability and security when reversing

changes made by configuration and system management tools. These methods can

then be used to act accordingly in the given cases. The methods will also outline

possibilities to handle similar use cases and give system administrators guidelines

to consider.

6.1 Installation, Update and Removal of Programs

One of the main actions performed through configuration and system management

tools is the management of installed packages, i.e. programs and libraries. As

outlined in chapter 5.3.1, while the solution to many problems may be obvious

and may even seem trivial to take care of, there are circumstances – especially

taking care of package updates that would break other packages – that need careful

consideration and testing27 before rolling them out to production.

Dependency Problems

A common problem faced by administrators is dependency errors. A package foo

in version 1.0 requires package bar>=1.0,<2.0. Updating bar to 2.0 should be

prohibited if foo must still be installed. Packages that are part of the official dis-

tribution package repositories are not considered to be a problem when it comes to

dependency problems and maintaining system stability, because their maintainers

make sure all requirements are up to date. The problem is programs and libraries

that are e.g. self-compiled and are manually put into appropriate places to make

them look like system packages. If foo from above is such a self compiled package,

27In fact, all changes should be tested on a staging system before being rolled out on a production
system!

Markus Holtermann 45

6.1 Installation, Update and Removal of Programs

the system package manager would not know about it and thus would not reject

updating bar to 2.0. Using foo will eventually fail; tracing the error can be time

and cost expensive.

A logical step to prevent the respective package from updating is to tell the

package manager that a particular version is used / required; in other words, that

a particular state of a package must not change. The equivalent command to do

that on a Debian-based Linux distribution for bar is apt-mark hold bar [Arc15].

While this solution works, packages depending on bar evolve and at some point

pinning the version of a particular package can prevent other packages from being

updated due to unmet dependencies.

By using APT pinning on Debian-based OSs, a package that is available in

multiple versions (e.g. bar in both 1.0 and 2.0) can be pinned to a specific

version or version range28:

Package: bar

Pin: version 1.*

Pin-Priority: 1001

This would allow the package manager to use the latest possible version of that

package that is supported by other installed packages. However, this behavior is

not true for APT as it tries to update to the latest available version of a package if

no other version has a higher pinning (priority). Hence, all packages that allow bar

>=2.0 would need to be pinned to their latest version requiring bar >=1.0,<2.0.

A better solution that can dynamically cope with possible updates of a de-

pendency is the development of an actual package that can be installed by the

package manager. If package buz==1.0 depends on bar>=1.0,<2.0 and an up-

dated version buz==2.0 on bar>=1.5,<2.0, a hold, due to the above restrictions,

of bar==1.4 would prevent an update of buz from 1.0 to 2.0. Having foo as a

package that is installed through the package manager would allow the package

manager to update bar to e.g. 1.9 as this is supported by both foo==1.0 and

buz==2.0.

28Debian man page for apt preferences: http://manpages.debian.org/cgi-bin/man.cgi?

sektion=5&query=apt_preferences&apropos=0&manpath=sid&locale=en

Markus Holtermann 46

http://manpages.debian.org/cgi- bin/man.cgi?sektion=5&query=apt_preferences&apropos=0&manpath=sid&locale=en
http://manpages.debian.org/cgi- bin/man.cgi?sektion=5&query=apt_preferences&apropos=0&manpath=sid&locale=en

6.1 Installation, Update and Removal of Programs

Rolling back to a previous version of a program can be seen as an “update”

to a specific version which was just released earlier than the currently installed

one. If all programs and libraries on a system are installed through the package

manager, removing a package with still installed dependencies will fail, unless

those dependencies are explicitly removed, too. However, if there are “manually

compiled” programs or libraries on the system – e.g. users compiling programs

in their home directory – those programs can break if their dependencies are not

Application Binary Interface (ABI) compatible or even unavailable.

Advantages Disadvantages

apt-mark hold

• No surprising updates • Not flexible
• Not an option if multiple custom

packages need different versions

APT pinning

• Allows for version ranges
• Easy to work with multiple pack-

ages

• Becomes confusing when multi-
ple packages are involved

regular packages

• Package manager is made aware
of dependencies for custom pack-
ages
• Works with multiple conflicting

versions

• Overhead to build and maintain
the package

Table 7: Advantages and disadvantages of different approaches to prevent breaking
custom programs

Stale Configuration Files

While Linux distributions ship ready-to-use configuration files for packages for an

average user, administrators normally have special requirements and thus update

Markus Holtermann 47

6.1 Installation, Update and Removal of Programs

them to their needs. Changing those configuration files should be done by config-

uration and system management tools, in order to preserve convergence and keep

those files in sync across multiple systems. The general handling of files is covered

in chapter 6.3 – Modifications Involving the File System.

When removing a package, however, a package manager may or may not remove

configuration files. Their behavior depends mainly on two factors:

1. The file state: A file that matches the file from a package installed by the

package manager is likely to be removed. A file that has been changed and

therefore does not match the corresponding file from an installed package,

on the other hand, is more likely not to be removed.

2. The command that is run: Some package managers have multiple ways of

uninstalling / removing a package from a system. Some of those commands

leave configuration files behind even though they did not change. Other

commands also remove configuration files that have been modified.

The Linux distribution implicitly defines which package manager is being used.

In the case of Debian and Ubuntu APT is the default. To remove a package apt-get

remove somepackage or apt-get purge somepackage can be used. The former

does not touch configuration files at all and keeps them in place. Hence modifi-

cations to a configuration file are still there after the package has been removed.

apt-get purge, on the other hand, cleans all files associated with that package

and also removes files that have been modified and do not match the file that is

included in a package.

Markus Holtermann 48

6.2 Modification of User Accounts

Advantages Disadvantages

Removal of unmodified files

• Keeps the system clean None

Removal of modified files

• Prevents surprises when rein-
stalling a package

• Might remove information that
cannot simply be recovered

Table 8: Advantages and disadvantages of removing modified and unmodified files

A package manager that works differently is Pacman used by Arch Linux: in-

stead of removing a modified configuration file, the file is renamed to include an

additional .pacsave extension. This allows an administrator to have a look at

differences between a configuration file after a package has been reinstalled.

Advantages Disadvantages

• Allows administrators to look up
configurations after a program
has been removed

• Clutters file system; content
should be part of configuration
management tools

Table 9: Advantages and disadvantages of renaming modified files

6.2 Modification of User Accounts

6.2.1 Creation

Local User Accounts

Creating local users with or without configuration and system management tools is

simple. In the end the creation boils down to a call to useradd29. This command

can take care of the user’s name, ID and groups, creation of the home directory

and setting a password, amongst other things.

29Man page man 8 useradd: http://linux.die.net/man/8/useradd

Markus Holtermann 49

http://linux.die.net/man/8/useradd

6.2 Modification of User Accounts

With reference to chapter 6.3, it should be said that the actual creation of the

home directory will not be done through the useradd command but by leveraging

the management tools as stated in 5.3.2 – Modification of User Accounts. This

firstly allows for better granularity and consistency when it comes to rolling back

a user creation, e.g. “is the user data still used?”, “is it part of a recent backup?”

and secondly, does not restrict the home directory to be created with settings

supported by useradd. Instead the home directory could be created on a SAN

and later mounted into the system.

Adding a user in non-distributed environments without login capabilities man-

aged through useradd (e.g. without password, invalid password or inactive) does

not pose any security issues iff30 there is no other way for the user to login, e.g.

through SSH public key authentication.

The same holds for local users in distributed systems. This particular situation

is more complex, though. In case /home is mounted from a central storage and the

particular user already has a valid SSH setup, creating the underlying user account

on a new system automatically gives the user access to that server. Hence, even

though this seems obvious, creating a user account on a system a user should not

have access to should never be done!

When creating local user accounts in distributed environments, one should en-

sure the global uniqueness of the user’s ID, as this is used on the underlying file sys-

tem among other things. Keeping the user IDs globally unique makes ID mapping31

in services like NFS and Samba needless and follows Rule 6: Use environment-wide

unique identifiers.

If the usernames are not used for anything else than logging in to a system, they

do not have to be globally unique. Uniqueness on a per system level is sufficient.

As soon as the usernames are used in a global service though, e.g. as the local part

in an email address, they have to be unique. Thus, to be future-proof, usernames

should also be globally unique.

30if and only if
31Tools like rpc.idmap: https://www.kernel.org/doc/Documentation/filesystems/nfs/

idmapper.txt or https://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/

idmapper.html

Markus Holtermann 50

https://www.kernel.org/doc/Documentation/filesystems/nfs/idmapper.txt
https://www.kernel.org/doc/Documentation/filesystems/nfs/idmapper.txt
https://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/idmapper.html
https://www.samba.org/samba/docs/man/Samba-HOWTO-Collection/idmapper.html

6.2 Modification of User Accounts

Central User Accounts

Central user directories such as LDAP handle the storage of user accounts differ-

ently than local users. Users always have an environment-wide unique identifier

which is the Distinguished Name (DN) in the context of LDAP. Creating another

user with this DN is prohibited. Access to a resource can be given based on the

location of the user in the directory tree or by the user’s properties.

While, by the very nature of being a central system, there is no way to have

two distinct users with the same identifier, its setup is more complex and requires

more thought. However, there are some benefits in using directory services when

it comes to larger environments: when a user wants to change its password, the

password can be updated in a single place and is then available to all services that

rely on it. For local users, the respective user would have to login to every service

and change the password manually. In case of central settings protected from a

user’s edits, the configuration and system management tool needs to update every

service, possibly taking a long time to propagate.

Since practically all major services used in today’s IT environments already

support LDAP out of the box, there is no real downside of using it instead of local

users in distributed systems. Services that do not support LDAP on its own can

rely on PAM which itself can use LDAP.

6.2.2 Removal

While removing a user does not pose any security risks – it reduces the amount

of people with access to a system – it can easily lead to a less stable environment

by increasing the number of failing usages f , according to the ratio defined in

equation 1, or even result in data loss.

Considering the differences between policy-regulated and policy-free accounts,

the latter must only be removed when all other resources depending on them are

rolled back. The former involves the danger of removing data which could not be

recovered because it is not part of a backup.

Markus Holtermann 51

6.2 Modification of User Accounts

Local User Accounts

The process for removing local user accounts in local and distributed environments

should not delete the home directory when using the underlying userdel32 for the

very same reasons that useradd does not create the directory.

As a first safeguard, userdel will reject a request to remove a user that is

currently running at least one process33. This does not, however, protect one from

breaking a service that is currently inactive. Once the service gets started as a

specific user or wants to drop privileges to a specific user, the service fails and

stops working.

Central User Accounts

The removal of a user account from a directory service is rather simple and will

only briefly be explained through the example of LDAP again. Other directory

services may behave differently. Thus the actions have to be adopted to match the

respective directory service in use.

LDAP provides the command ldapdelete34 to remove leaves or entire subtrees.

Similar to the removal of directories as explained in 6.3 – Modifications Involving

the File System, removing nodes that are not leaves, i.e. Organizational Units

(OUs), will result of the deletion of all nested nodes. Hence OUs must only be

removed iff all nodes in its subtree are allowed to be removed.

32Man page man 8 userdel: http://linux.die.net/man/8/userdel
33On Ubuntu 14.04 userdel fails with an error like “userdel: user testuser is currently

used by process 31775”.
34Man page man 1 ldapdelete: http://linux.die.net/man/1/ldapdelete

Markus Holtermann 52

http://linux.die.net/man/8/userdel
http://linux.die.net/man/1/ldapdelete

6.3 Modifications Involving the File System

Advantages Disadvantages

Local user accounts

• Easy to use
• Works out of the box
• All programs support them

• Not an option for larger environ-
ments
• Expensive maintenance with

many users

Local user accounts in distributed systems

• Works out of the box
• All programs support them

• No practical way to synchronize
user settings across systems
• Easy to expose servers to unpriv-

ileged users
• Hard to maintain
• May result in collisions when

merging networks

Central user accounts in distributed systems

• No need for synchronization of
user settings
• Scales for tens of thousands of

users
• No collisions when merging net-

works

• Complex initial setup
• Overhead in maintenance and

setup

Table 10: Advantages and disadvantages of different kind of user management

6.3 Modifications Involving the File System

As outlined in chapters 5.1 – Classification of IT Resources and 5.2 – Rules Derived

From the Taxonomy in section “Recoverability”, there are three kinds of files:

1. Files created/tracked/updated through the system package manager or through

resources installed through the system package manager

2. Files tracked through the configuration and system management tool

3. Files created/changed/deleted by a user

Markus Holtermann 53

6.3 Modifications Involving the File System

Following this classification, changing files that fall under (2) back to a previous

state can be accomplished by updating the configuration and system management

tool’s configuration. On the next run, the respective files will be updated.

Changing files that are tracked through the system package manager (1) can of

course be performed by using the configuration tool. Another, often more appro-

priate solution to roll back a system to a previous state, can involve a downgrade of

the respective packages. Which, in turn, needs to follow the guidelines mentioned

in 6.1 – Installation, Update and Removal of Programs.

User data, i.e. files that may or may not fall under (1) and all files that a user

created or modified (3) need to be part of a backup before any changes to these

files are made. This, in practice, is way more complex than any other case targeted

in this thesis. While user data is normally kept in a user’s home directory, users

may have permissions to place files outside their home directory. As the existence

of those files is unknown to a backup tool, unless coincidentally placed inside a

folder that is backed up, there will not be a backup of those files.

As one can simply derive from those explanations, reversing files matching (1)

or (2) is not a problem in general. Reversing user data is only possible when the

files are placed inside a backed up location, otherwise user data is unrecoverable

and thus not reversible.

To maintain the system stability from a user’s perspective, a user must not be

able to modify any files that are not backed up. Files that are not part of a backup

cannot be required to safely and securely run a system. Furthermore, in order

to preserve congruence of “identical” systems and not turn them into divergent

systems, users must not be able to manually modify any files that are required

to run the system and its services. In other words, all files that are required to

keep a system running must either come from the system package manager or the

configuration management tool.

Directories follow the same rules. There is one important consideration when

rolling back a directory creation, i.e. removing a directory again: A directory must

only be removed when it is empty and does not contain any files or other directories.

The former requirement can be disregarded when a directory and contained files

Markus Holtermann 54

6.4 Network Setup Modifications

have been created in a single step. Removing that directory may also remove that

particular file. However, recursively removing a directory is dangerous and can

lead to severe data loss:

• Another file inside that directory that is not part of a backup would be

removed

• Another directory inside that directory could be a mount point with a cur-

rently mounted file system. Recursively descending inside that directory

would remove all files unless e.g. --one-file-system is given to rm35

Apart from the unintended data loss when removing files that are not recover-

able, adding or changing files can easily result in a broken service setup. A common

problem are syntax errors in those files. Some programs, e.g. Apache and Nginx,

provide a tool to check their configuration for obvious errors36. On Nginx for ex-

ample, linking to a non-existing ssl certificate key results in a “No such file

or directory” error. If the Nginx service is restarted, the starting procedure would

fail. An easy way to protect against this is making the configuration management

tool check for the configuration test and revert the configuration file to its prior

state and either raise a warning or bail out.

6.4 Network Setup Modifications

When modifying the network configuration of resources, one can easily not only

break the setup of that particular resource – and may even loose control of it –

but also render parts of the network unusable. This is especially true when adding

and removing IP addresses from resources or changing routing configuration.

A countermeasure to prevent duplicate IP address assignments can be adding

all IP addresses to a central database like the CMDB which will then be queried

about the availability of a specific IP address before effectively adding the IP

address to the server’s configuration. This way addresses cannot be reused as long

35Man page man 1 rm: http://linux.die.net/man/1/rm
36For Apache the command is /usr/sbin/apache2ctl configtest; for Nginx the command is

/usr/bin/nginx -t

Markus Holtermann 55

http://linux.die.net/man/1/rm

6.5 Ordering of Changes in Distributed Systems

as the CMDB has ACID behavior.

Adding an IP address is not necessarily reversible: if another resource depends

on this system, removing the address would make the other resource fail and

hence breaks the system stability. Therefore dependent systems must express

their dependency on that host and IP address and an IP address must not be

removed until all dependencies have been resolved.

Furthermore, the address removal process must not directly mark the IP address

as unused. If it did, undoing the deleting can fail because the respective IP address

is already in use by another system. It should rather mark the address as “to

be deleted” for a grace period in which it may only be used when undoing the

deletion process. There may also be services that depended on the address which

have already been shut down. In case they are restarted they would fail.

This boils down to the fact that deallocating (not only identifying) resources

must only be done once all resources that have or have had dependencies to it are

not available anymore. A practical approach to accomplish this can be found on

the flyingcircus.io blog: Automatically deleting things – safely and reliably [The15].

6.5 Ordering of Changes in Distributed Systems

Referring to the use case presented in chapter 5.3.5 – Ordering of Changes in Dis-

tributed Systems, there are two obvious ways to change the setup according to the

requirements. Both approaches, however, result in a short period of unavailability

of the server for the proxy.

There are two slightly more complex solutions to tackle the problem. They

both require the proxy and server to gracefully reload their configuration without

terminating current and rejecting new incoming requests:

1. Bind server to multiple ports

2. Redundant server setup

Markus Holtermann 56

6.5 Ordering of Changes in Distributed Systems

6.5.1 Bind Server to Multiple Ports

The idea behind this approach is to give the server multiple ports to listen on.

That way the proxy can connect to both the old and the new port. The steps in

order to achieve a downtime free change are:

1. Add the new port to the listening ports of the server

2. Gracefully reload the server process

3. Change proxy setup to connect to the new port

4. Gracefully reload the proxy service

5. Remove the old port from the listening ports of the server

6. Gracefully reload the server process

6.5.2 Redundant Server Setup

This approach offers a similar solution that is more appropriately for larger infras-

tructures where a proxy may also acts as a load balancer. It can also allow for

using server services that do not offer the possibility to bind the service to multiple

ports. It requires though that a subset of servers can be used to serve the service

for a short time while the transition is in progress. For simplicity the servers are

split into sets s1 and s2.

1. Remove the servers from s1 from the proxy’s configuration

2. Gracefully reload the proxy service

3. Change the port of the servers in s1 to the new port (delete the old port)

4. Gracefully reload the server processes in s1

5. Change proxy setup to exclude the hosts in s2 (only connect to hosts in s1)

6. Gracefully reload the proxy service

7. Change the port of the servers in s2 to the new port (delete the old port)

Markus Holtermann 57

6.5 Ordering of Changes in Distributed Systems

8. Gracefully reload the server processes in s2

9. Change proxy setup to include the hosts in www2 again

10. Gracefully reload the proxy service

In case the page load cannot be handled by only s1 or s2, the web servers can

be split into smaller groups. In that case the steps (5) - (8) need to be repeated

with the sets si.

As one can see, the overall change performed in this example is reversible and

does not require a specific explanation on how to roll it back. The reversibility

of the change is due to all lower level changes (i.e. changing the configuration

files, reloading the processes) being reversible. Other complex examples, however,

are not necessarily reversible. This can be due to destructive operations such as

removing unrecoverable files.

Advantages Disadvantages

Bind Web Server to Multiple Ports

• Easy to accomplish
• Works only for single host sys-

tems

• Not an option for all services
(e.g. PostgreSQL and MySQL do
not support to bind to multiple
ports)

Redundant Web Server Setup

• Easy to accomplish
• Scales for large systems
• Might be an option for services

not supporting binding to multi-
ple ports

• Obviously not an option for sin-
gle host systems

Table 11: Advantages and disadvantages of approaches to maintain service uptime

Markus Holtermann 58

7. Evaluation

7 Evaluation

This master’s thesis first defined a taxonomy to classify resources in a modern IT

environment and continued with rules derived from the classification that a system

administrator should follow. Based on the methods covered in 6 – Maintaining

System Stability and Security, one can conclude what a configuration and system

management tool has to provide to maintain system stability and security when

reversing changes : dependencies between resources.

In order to integrate automated configuration management into an existing or

new IT environment one should follow these steps:

1. Identify the resources that are part of the environment. This includes but

is not limited to the hardware components, software, accounts and account

data.

2. Classify all resources according to the taxonomy described in chapter 5.1 –

Classification of IT Resources on page 23. This helps to find requirements

and limitations in the considered environment setup.

3. Work out the dependencies between the resources. What has to be done

before something else? What requires another resource to be set up?

The following two case studies show examples of how Puppet and Ansible can

be used to maintain a package installation status, files and directories, service

status, among other aspects of a system.

7.1 Case Study: Puppet

The code for this Puppet case study of how to define dependencies between files,

a package installation status and the status whether a service should be running

or not, can be found in D – Case Study: Puppet. It is a simplified version taken

from the production environment37 at Flying Circus Internet Operations GmbH.

37Source: https://bitbucket.org/flyingcircus/fc.platform/src/d8f01d8f41bf/

puppet/modules/sys_cluster/manifests/

Markus Holtermann 59

https://bitbucket.org/flyingcircus/fc.platform/src/d8f01d8f41bf/puppet/modules/sys_cluster/manifests/
https://bitbucket.org/flyingcircus/fc.platform/src/d8f01d8f41bf/puppet/modules/sys_cluster/manifests/

7.1 Case Study: Puppet

The Puppet manifest describes the actions Puppet uses to take care of the Linux

package “Consul”.

What one can see in sys_cluster/manifests/consul.pp lines 8 to 10 are

dependency definitions that make Puppet first follow the descriptions in sys_

cluster/manifests/consul/install.pp, then takes care of the configuration

by following sys_cluster/manifests/consul/config.pp and finally starting the

service as defined in sys_cluster/manifests/consul/service.pp.

The file config.pp writes a file with an encryption key on the hard disk of the

server (lines 12-15). By additionally specifying the “mode”, Puppet complies with

Rule 4: Keep identifying resources secret and effectively sets the access permissions

to the file to be read-write for its owner and no access for anybody else. However,

not specifying a file owner here does not pose a problem, since the system-wide

default sets the owner and group to root. However, if there were not a default

value, the file owner or group could be changed manually and Puppet would not

change it back.

Both install.pp and service.pp inherit from sys_cluster/manifests/consul/

absent.pp which defines the items Puppet should remove or deactivate. By defin-

ing the absence of the packages “consule” and “consulate”, and the absence of the

directories /etc/consul.d and /var/lib/consul (absent.pp lines 2-16) the Pup-

pet manifest follows rules Rule 9: Prune files and folders with package manager

and Rule 10: Remove files managed by a configuration and system management

tool. In lines 18-21 of absent.pp, an explicit dependency for the service “consul”

is defined to be disabled before the package “consul”. This is an application of

Rule 7: Review depending resources. Hence Puppet makes sure the service is not

running before the installation itself. The service.pp file, on the other hand,

revokes the dependency in line 6.

Without explicit dependencies between the “consul” service and the package

for the installation and uninstallation part, Puppet may either try to start the

service before it is installed or remove the package before the service is stopped.

When the trigger to restart the consul daemon in service.pp lines 9-11 was

Markus Holtermann 60

7.2 Case Study: Ansible

written, the administrator followed Rule 3: Estimate downtime and check depen-

dencies. The consul service is set up as a clustered service, thus taking down a

single node in the cluster is not a problem.

7.2 Case Study: Ansible

This case study shows how Ansible can be used to configure and manage the web

server “Nginx”. The configuration code is shown in E – Case Study: Ansible and

was originally taken from the author’s own server setup.

The first code snippet, roles/nginx/tasks/main.yml, is the role’s main con-

figuration and the entry point for Ansible. In lines 2-3, Ansible ensures that Nginx

is installed on all target systems (the uninstallation is not part of the excerpt). As

outlined in 6.2.1 – Local User Accounts, the creation of directories should be done

by the parts of the configuration management tool that need these files / direc-

tories. Hence lines 8-12 create some specific folders used by the included (lines

13-14) declarations which will be explained in the next paragraphs. If Nginx is

supposed to be enabled by default, it is activated in lines 15-16. Since Ansible

processes all tasks chronologically, having the “autostart activation” at the end of

the role ensures that Nginx is not started upon next reboot if the server crashes

during the setup. Instead the server can be rebooted and Ansible can continue to

set up the Nginx installation without interfering with an already running Nginx

service.

The file roles/nginx/tasks/vhosts.yml takes care of the setup of all vir-

tual hosts defined for a server. Prefixing the names of the configuration files

with a number, as one can see in hostvars/server.example.com/vars.yml lines

18-21, ensures the configuration files are environment-wide unique (Rule 6: Use

environment-wide unique identifiers). The tasks in lines 2-8 and 9-13 of vhosts.

yml ensure the presence and absence of the virtual hosts defined in the vari-

ables nginx vhosts and nginx vhosts absent respectively. The latter maintains

Rule 10: Remove files managed by a configuration and system management tool.

The remaining two tasks (lines 14-21 and 22-24) control the root directories for

each virtual host. It is worth mentioning that as of Ansible version 1.9 there is

Markus Holtermann 61

7.2 Case Study: Ansible

no native way to prevent recursive deletions of directories. Therefore the task fol-

lows Rule 10: Remove files managed by a configuration and system management

tool, but would violate Rule 11: Check reversibility of resource changes and specify

outcome if the content of the variable nginx root absent is not defined manually.

In roles/nginx/tasks/ssl.yml lines (2-19), Ansible creates a fallback SSL /

TLS certificate and key for the current host if none is present. This way Ansible

does not reuse an identifying resource by accident (Rule 2: Be careful when reusing

limited resources) and works in accordance with Rule 1: Be careful when changing

resource accessibility. The remaining lines of the file define the creation of SSL

/ TLS certificates and keys from the content of the variable nginx ssl data.

Furthermore, the permissions to the certificates and keys are set to read-only

by root, following Rule 4: Keep identifying resources secret. The lines 29 and 40

additionally ensure that the content of the nginx ssl data variable does not show

up in logs.

Although the actual revocation of the SSL / TLS certificates does not happen

as part of the Ansible playbook, the removal of the certificates and private keys

from the server are closely related to Rule 5: Revoke identifying resources.

Instead of running Nginx as root or a particular user, the roles/nginx/files/

nginx.conf file binds the service to the user and group “http” (see Rule 8: Bind

production resources to role accounts).

These case studies demonstrate that Ansible has a much coarser dependency

granularity than Puppet. This is due to the sequential execution of the tasks

inside the roles which implies that many dependencies are already resolved by

ordering the tasks appropriately. Puppet, on the other hand, allows for much finer

dependencies.

Markus Holtermann 62

8. Conclusion and Prospects

8 Conclusion and Prospects

This master’s thesis shows that not carefully following the dependencies between

resources can lead to severe damage not only to single resources but to the entire

environment. A detailed example has been described by my colleague Christian

Theune on the flyingcircus.io blog: Automatically deleting things – safely and

reliably [The15].

Modern IT systems consist of hundreds and thousands of resources. Keeping all

of them functioning in the way they are supposed to is a challenge administrators

are facing every day. The usage of configuration management tools – regardless of

whether they are agent-based or agent-less – helps them a lot. Using tools that

help to maintain at least convergent systems is required. The risks of creating

divergent systems by not using automated configuration and system management

are ubiquitous. Divergent systems will inevitably fail sooner than later, possibly

with data loss or a long system downtime.

Two of the initially mentioned configuration and system management tools –

“CFEngine” and “Puppet” – provide an interface to specify dependencies between

resources. In the “CFEngine” context they are called Promises [AS, ch 5.3f]. In

“Puppet” environments they are Metaparameters and are used in the context of

Resource References and Ordering [Lab].

“Ansible” only allows specifying dependencies between different roles [Ans15].

This can be enough when the granularity of the different roles is fine enough.

Though most roles provide a self-contained set of tasks that are fully applied,

dependencies can exist between those roles.

“Chef” does not allow any kind of dependencies which is justifiable due to its

deterministic behavior [Aru12] as also argued by Traugott and Brown in [TB02].

Checklists like the “BSI-100 Standard” or process documentation specifications

like ITIL are not feasible in large IT environments from an administrator’s point

of view, at least as long as they describe processes executed by people. The human

error factor can lead to a company’s bankruptcy as presented in “Knightmare: A

DevOps Cautionary Tale” [Sev14]. Instead these standards provide solid starting

Markus Holtermann 63

8. Conclusion and Prospects

points of how to reduce system faults.

Future development in the area of configuration and management systems

should focus on easier, more administrator focused, integration of rollback strate-

gies. Referring back to Mark Burgess’ Computer Immunology [Bur98] idea, soft-

ware components providing “self-healing” capabilities to IT systems would exten-

sively help administrators to maintain system stability.

Although neither “Docker” nor “Rocket” nor “NixOS” are the focus of this

thesis, it is worth looking at what role they can play in the future with respect to

configuration and system management.

Docker and Rocket provide inherently congruent system environments. They

can easily be used to deploy the same service a thousand times. The lack of

reverting changes from the perspective of this thesis does not automatically make

them more stable or secure. Although the changes to, for example, the Dockerfile

are tracked in a version control system as described by Traugott and Huddleston

[TH98, ch. 1], administrators still need to think about the consequences of e.g.

removing a package or removing the access restrictions on a certain file.

NixOS introduces some innovative features with its functional dependency ap-

proach. Its usage is currently being evaluated at Flying Circus Internet Operations

GmbH. From a system stability perspective, NixOS seems to be far ahead of afore-

mentioned convergent and congruent management tools due to its atomic upgrades

and reproducible system configurations.

Markus Holtermann 64

A. List of Abbreviations

A. List of Abbreviations

ABI Application Binary

Interface

ACID Atomicity,

Consistency, Isolation,

Durability

CEO Chief Executive

Officer

CIA Confidentiality,

Integrity, Availability

CMDB Configuration

management database

CRL Certificate Revocation

List

CTO Chief Technology

Officer

DHCP Dynamic Host

Configuration

Protocol

DN Distinguished Name

DNS Domain Name System

IANA Internet Assigned

Numbers Authority

ITIL Information

Technology

Infrastructure Library

I/O Input / Output

LDAP Lightweight Directory

Access Protocol

LXC LinuX Container

MTBF Mean Time Between

Failure

MTTR Mean Time To Repair

NFS Network File System

NTP Network Time

Protocol

OCSP Online Certificate

Status Protocol

OS Operating System

OU Organizational Unit

PAM Pluggable

authentication module

SAN Storage Area Network

SSH Secure Shell

SSL Secure Sockets Layer

TLS Transport Layer

Security

WSGI Web Server Gateway

Interface

Markus Holtermann V

B. List of Figures

B. List of Figures

1 Divergence . 9

2 Convergence . 10

3 Congruence . 12

4 Illustration of the interfaces Docker uses to access virtualization

features of the Linux kernel . 16

5 Schematic representation of computer security attributes 22

6 Taxonomy for resources in IT environments 24

7 Clashing user identities from servers 1, 2 and 5, 6 on 4 in distributed

systems without global user database. 36

8 Dependencies for policy-regulated and policy-free resources 37

Markus Holtermann VI

C. List of Tables

C. List of Tables

1 Matrix for configuration management classification and manual and

automatic configuration management 8

2 Classification of programs / libraries installed via a system’s package

manager . 35

3 Classification of user accounts . 39

4 Classification of files . 40

5 Classification of directories . 41

6 Classification of network interfaces 43

7 Advantages and disadvantages of different approaches to prevent

breaking custom programs . 47

8 Advantages and disadvantages of removing modified and unmodified

files . 49

9 Advantages and disadvantages of renaming modified files 49

10 Advantages and disadvantages of different kind of user management 53

11 Advantages and disadvantages of approaches to maintain service

uptime . 58

Markus Holtermann VII

D. Case Study: Puppet

D. Case Study: Puppet

1 class sys_cluster::consul {

2 class { ’sys_cluster::consul::install’: } ->

3 class { ’sys_cluster::consul::config’: } ~>

4 class { ’sys_cluster::consul::service’: }

5

6 # work around dependency problem: Service[’consul’] is originally

7 # declared in install.pp and thus, it does logically not belong

8 # to service.pp

9 Class[’sys_cluster::consul::config’] ~> Service[’consul’]

10 }

sys cluster/manifests/consul.pp

1 class sys_cluster::consul::install inherits sys_cluster::consul::absent {

2 Package[’consul’] { ensure => present }

3

4 Package[’consulate’] { ensure => present }

5

6 File[’/etc/consul.d’] { ensure => directory }

7

8 File[’/var/lib/consul’] { ensure => directory }

9

10 sys_portage::conffile { ’/etc/init.d/consul’: seen => ’0.5.0’ }

11

12 sys_portage::conffile { ’/etc/conf.d/consul’: seen => ’0.5.0’ }

13 }

sys cluster/manifests/consul/install.pp

Markus Holtermann VIII

D. Case Study: Puppet

1 class sys_cluster::consul::config {

2 $encryption_key = consul_key()

3

4 file { ’/etc/conf.d/consul’:

5 content => template(’sys_cluster/consul/conf.d_consul.erb’)

6 }

7

8 file { ’/etc/consul.d/00basic.json’:

9 content => template(’sys_cluster/consul/basic.json.erb’)

10 }

11

12 file { ’/etc/consul.d/01encryption.json’:

13 content => ’{"encrypt": "${encryption_key}"}\n’,

14 mode => 0600,

15 }

16

17 file { ’/etc/local/consul’: ensure => directory }

18 }

sys cluster/manifests/consul/config.pp

1 class sys_cluster::consul::service inherits sys_cluster::consul::absent {

2 include sys_process::restarter

3

4 Service[’consul’] {

5 provider => ’gentoo’, enable => true,

6 ensure => true, before => undef,

7 }

8

9 sys_process::restarter::service { ’/run/consul.pid’:

10 restart => ’/etc/init.d/consul restart’,

11 }

12 }

sys cluster/manifests/consul/service.pp

Markus Holtermann IX

D. Case Study: Puppet

1 class sys_cluster::consul::absent {

2 package { ’consul’:

3 category => ’sys-cluster’, ensure => absent,

4 }

5

6 package { ’consulate’:

7 category => ’dev-python’, ensure => absent,

8 }

9

10 file { ’/etc/consul.d’:

11 ensure => absent, force => true,

12 }

13

14 file { ’/var/lib/consul’:

15 ensure => absent, force => true,

16 }

17

18 service { ’consul’:

19 enable => false, ensure => false,

20 provider => gentoo_absent, before => Package[’consul’],

21 }

22 }

sys cluster/manifests/consul/absent.pp

Markus Holtermann X

E. Case Study: Ansible

E. Case Study: Ansible

1 ---

2 - name: Install Nginx

3 pacman: name=nginx state=present

4 - name: Set base configuration

5 copy: src="nginx.conf" dest="/etc/nginx/nginx.conf"

6 notify:

7 - restart nginx

8 - name: Create directories

9 file: path="/etc/nginx/{{ item }} " state=directory

10 with_items:

11 - sites

12 - ssl

13 - include: vhosts.yml

14 - include: ssl.yml

15 - name: Enable service

16 service: name=nginx enabled={{ nginx_enabled }}

roles/nginx/tasks/main.yml

1 ---

2 - name: Create vhosts

3 copy:

4 src: "vhosts/{{ item }} "

5 dest: "/etc/nginx/sites/{{ item }} "

6 with_items: nginx_vhosts

7 notify:

8 - restart nginx

9 - name: Remove old vhosts

10 file: dest="/etc/nginx/sites/{{ item }} " state=absent

11 with_items: nginx_vhosts_absent

12 notify:

13 - restart nginx

14 - name: Create vhost roots

15 file:

16 dest: "{{ item.path }} "

17 owner: "{{ item.owner|default(’root’) }} "

18 group: "{{ item.group|default(’root’) }} "

19 mode: "{{ item.mode|default(’0755’) }} "

Markus Holtermann XI

E. Case Study: Ansible

20 state: directory

21 with_items: nginx_root

22 - name: Remove old vhost roots

23 file: dest="{{ item.path }} " state=absent

24 with_items: nginx_root_absent

roles/nginx/tasks/vhosts.yml

1 ---

2 - name: Generate master key

3 command: openssl genrsa -out /etc/nginx/ssl/local.key 1024

4 creates="/etc/nginx/ssl/local.key"

5 notify:

6 - restart nginx

7 - name: Set master key permissions

8 file: dest="/etc/nginx/ssl/local.key" owner=root group=root mode=0400

9 - name: Generate master certificate

10 command: openssl req -new -nodes -x509 -subj

11 "/C=DE/ST=Berlin/L=Berlin/O=private/CN=localhost"

12 -days 3650 -key /etc/nginx/ssl/local.key -out

13 /etc/nginx/ssl/local.crt -extensions v3_ca

14 creates="/etc/nginx/ssl/local.crt"

15 notify:

16 - restart nginx

17 - name: Set master certificate permissions

18 file: dest=/etc/nginx/ssl/local.crt owner=root group=root mode=0400

19 - name: Add SSL certificates

20 file:

21 dest: "/etc/nginx/ssl/{{ item.key }} .crt"

22 content: "{{ item.value.crt }} "

23 owner: root

24 group: root

25 mode: 0400

26 with_dict: nginx_ssl_data

27 notify:

28 - restart nginx

29 no_log: true

30 - name: Add SSL keys

31 file:

32 dest: "/etc/nginx/ssl/{{ item.key }} .key"

Markus Holtermann XII

E. Case Study: Ansible

33 content: "{{ item.value.key }} "

34 owner: root

35 group: root

36 mode: 0400

37 with_dict: nginx_ssl_data

38 notify:

39 - restart nginx

40 no_log: true

41 - name: Remove old SSL certificates

42 file: dest="/etc/nginx/ssl/{{ item }} .crt" state=absent

43 with_items: nginx_ssl_absent

44 notify:

45 - restart nginx

46 - name: Remove old SSL keys

47 file: dest="/etc/nginx/ssl/{{ item }} .key" state=absent

48 with_items: nginx_ssl_absent

49 notify:

50 - restart nginx

roles/nginx/tasks/ssl.yml

1 ---

2 - name: restart nginx

3 service: name=nginx state=restarted

roles/nginx/handlers/main.yml

1 ---

2 nginx_root:

3 - path: /srv/http/example.com

4 owner: http

5 group: http

6 nginx_root_absent:

7 - path: /srv/http/staging.example.com

8 nginx_ssl_data:

9 example.com:

10 crt: |

11 -----BEGIN CERTIFICATE-----

12 Domain and intermediate certificates data

13 -----END CERTIFICATE-----

Markus Holtermann XIII

E. Case Study: Ansible

14 key: |

15 -----BEGIN RSA PRIVATE KEY-----

16 Private key data for certificate above

17 -----END RSA PRIVATE KEY-----

18 nginx_vhosts:

19 - 01-example.com.conf

20 nginx_vhosts_absent:

21 - 02-staging.example.com.conf

host vars/server.example.com/vars.yml

1 user http http;

2 worker_processes 2;

3

4 error_log /var/log/nginx/error.log;

5

6 events {

7 worker_connections 1024;

8 }

9

10 http {

11 include mime.types;

12 default_type application/octet-stream;

13 access_log /var/log/nginx/access.log;

14

15 ssl_ciphers ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256: \

16 ECDH+AES128:DH+AES:ECDH+3DES:DH+3DES:RSA+AESGCM: \

17 RSA+AES:RSA+3DES:!aNULL:!MD5:!DSS;

18 ssl_prefer_server_ciphers on;

19 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

20 ssl_session_cache shared:SSL:50m;

21 ssl_session_timeout 5m;

22

23 server {

24 listen [::]:80 default_server ipv6only=off;

25 listen [::]:443 default_server ipv6only=off ssl;

26 server_name localhost;

27 error_page 500 502 503 504 /50x.html;

28

29 ssl_certificate /etc/nginx/ssl/local.crt;

Markus Holtermann XIV

E. Case Study: Ansible

30 ssl_certificate_key /etc/nginx/ssl/local.key;

31

32 location = /50x.html {

33 root /usr/share/nginx/html;

34 }

35

36 location / {

37 root /usr/share/nginx/html;

38 index index.html index.htm;

39 }

40 }

41

42 include /etc/nginx/sites/*.conf;

43 }

roles/nginx/files/nginx.conf

1 server {

2 listen [::]:443 ssl;

3 server_name example.com;

4 add_header Strict-Transport-Security "max-age=31536000; preload";

5

6 ssl_certificate /etc/nginx/ssl/example.com.crt;

7 ssl_certificate_key /etc/nginx/ssl/example.com.key;

8

9 location / {

10 root /srv/http/example.com/;

11 index index.html;

12 }

13 }

roles/nginx/files/vhosts/01-example.com.conf

Markus Holtermann XV

F. Glossary

F. Glossary

APT Advanced Packaging Tool – A system package manager on Debian based

Operating Systems (OSs) that uses dpkg.

atime The time of the last access of a file’s content.

Configuration File A file that a service on a system uses to retrieve and store

settings in.

ctime The time of the last change of a file’s attributes.

DEB The file format used by APT and dpkg.

DN Distinguished Name – The full, unique name of an item in LDAP.

dpkg The base for Debian package managers.

Home Directory A directory on a file system that is only usable by its owner.

LDAP Lightweight Directory Access Protocol – A directory protocol to handle

identities in an IT environment.

MTBF Mean Time Between Failure – The time a system runs correctly between

two failures.

mtime The time of the last modification of a file’s content.

MTTR Mean Time To Repair – The time a system is faulty between to successful

periods.

NTP Network Time Protocol – A protocol to synchronize the global time across

the Internet..

OU Organizational Unit – The groups a user is part of in LDAP.

PAM Pluggable authentication module – An API to locally authenticate a user.

Markus Holtermann XVI

F. Glossary

POSIX A standard to maintain interoperability between OSs.

Process ID Each time a process starts on UNIX systems they get a, to that time,

unused ID.

RPM RPM Package Manager, mainly used on RedHat based OSs.

SSH Secure Shell – Protocol and program to login to remote systems.

SSL / TLS Secure Sockets Layer / Transport Layer Security – Protocols to pro-

vide confidentiality and integrity of data.

User ID A system-wide unique identifier for a user.

Markus Holtermann XVII

G. References

G. References

[And94] Paul Anderson. Towards a high-level machine configuration sys-
tem. In Proceedings of the 8th USENIX Conference on System Ad-
ministration, LISA ’94, Boston, MA, USA, 1994. USENIX Asso-
ciation. https://www.usenix.org/legacy/publications/library/

proceedings/lisa94/full_papers/anderson.a, Visited May 8, 2015.

[Ans15] Inc. Ansible. Playbook roles and include statements, April 2015. http://
docs.ansible.com/playbooks_roles.html#role-dependencies, Vis-
ited Apr 27, 2015.

[Arc15] Arch Linux Wiki. Pacman rosetta, April 2015. https://wiki.

archlinux.org/index.php?title=Pacman_Rosetta&oldid=366964,
Visited Apr 4, 2015.

[Aru12] John Arundel. Puppet versus chef: 10 reasons why puppet wins, Decem-
ber 2012. http://bitfieldconsulting.com/puppet-vs-chef, Visited
Apr 27, 2015.

[AS] CFEngine AS. Cfengine 3 concept guide. https://auth.cfengine.

com/archive/manuals/cf3-conceptguide, Visited Apr 27, 2015.

[Avr13] Abel Avram. Docker: Automated and consistent software deployments.
March 2013. http://www.infoq.com/news/2013/03/Docker, Visited
May 12, 2015.

[BC11] Mark Burgess and Alva Couch. On system rollback and totalized fields:
An algebraic approach to system change. The Journal of Logic and
Algebraic Programming, 80(8):427 – 443, 2011.

[Bur] Mark burgess biographical information. http://markburgess.org/

bio.html, Visited Jan 24, 2015.

[Bur93] Mark Burgess. Cfengine v2.0: A network configuration tool, September
1993. http://www.iu.hio.no/~mark/papers/cfengine_history.pdf,
Visited Apr 27, 2015.

[Bur95] Mark Burgess. A site configuration engine, 1995. https://www.usenix.
org/legacy/publications/compsystems/1995/sum_burgess.pdf,
Visited May 8, 2015.

[Bur98] Mark Burgess. Computer immunology. In Proceedings of the
12th USENIX Conference on System Administration, LISA ’98,

Markus Holtermann XVIII

https://www.usenix.org/legacy/publications/library/proceedings/lisa94/full_papers/anderson.a
https://www.usenix.org/legacy/publications/library/proceedings/lisa94/full_papers/anderson.a
http://docs.ansible.com/playbooks_roles.html#role-dependencies
http://docs.ansible.com/playbooks_roles.html#role-dependencies
https://wiki.archlinux.org/index.php?title=Pacman_Rosetta&oldid=366964
https://wiki.archlinux.org/index.php?title=Pacman_Rosetta&oldid=366964
http://bitfieldconsulting.com/puppet-vs-chef
https://auth.cfengine.com/archive/manuals/cf3-conceptguide
https://auth.cfengine.com/archive/manuals/cf3-conceptguide
http://www.infoq.com/news/2013/03/Docker
http://markburgess.org/bio.html
http://markburgess.org/bio.html
http://www.iu.hio.no/~mark/papers/cfengine_history.pdf
https://www.usenix.org/legacy/publications/compsystems/1995/sum_burgess.pdf
https://www.usenix.org/legacy/publications/compsystems/1995/sum_burgess.pdf

pages 283–298, Berkeley, CA, USA, 1998. USENIX Associa-
tion. https://www.usenix.org/legacy/publications/library/

proceedings/lisa98/full_papers/burgess/burgess.pdf, Visited
Jan 18, 2015.

[Dai04] John Daintith. A Dictionary of Computing. Oxford University Press,
2004. http://www.encyclopedia.com/doc/1O11-systemsecurity.

html, Visited Mar 27, 2015.

[Dja15] Django Software Foundation. Migrations in django, 03 2015. https://

docs.djangoproject.com/en/dev/topics/migrations/, Visited Mar
13, 2015.

[Fel13] Anja Feldmann. Lecture: Internet/computer security, summer term
2013, 2013. Part I: General – Terminology.

[Fow12] Martin Fowler. Snowflakeserver, July 2012. http://martinfowler.

com/bliki/SnowflakeServer.html, Visited May 8, 2015.

[Gan95] Mike Gancarz. The UNIX Philosophy. Digital Press, Newton, MA, USA,
1995.

[Gra81] Jim Gray. The transaction concept: Virtues and limita-
tions. In Proceedings of the 7th International Conference on Very
Large Databases, Cupertino, CA, USA, June 1981. Tandem Com-
puters. http://research.microsoft.com/en-us/um/people/gray/

papers/theTransactionConcept.pdf, Visited May 6, 2015.

[Gra85] Jim Gray. Why do computers stop and what can be done about it.
Technical Report 85.7, Tandem Computers, June 1985. http://www.

hpl.hp.com/techreports/tandem/TR-85.7.pdf, Visited May 6, 2015.

[HR83] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Comput. Surv., 15(4):287–317, December 1983.

[IET14] IETF. Iana ipv4 special-purpose address registry, December 2014.
http://www.iana.org/assignments/iana-ipv4-special-registry/

iana-ipv4-special-registry.xhtml, Visited Jan 20, 2015.

[Lab] Puppet Labs. Learning puppet — resource ordering. https://docs.

puppetlabs.com/learning/ordering.html, Visited Apr 27, 2015.

[PFBH14] Manuel Pais, Chad Fowler, Mark Burgess, and Mitchell Hashimoto.
Virtual panel on immutable infrastructure. March 2014. http://www.

Markus Holtermann XIX

https://www.usenix.org/legacy/publications/library/proceedings/lisa98/full_papers/burgess/burgess.pdf
https://www.usenix.org/legacy/publications/library/proceedings/lisa98/full_papers/burgess/burgess.pdf
http://www.encyclopedia.com/doc/1O11-systemsecurity.html
http://www.encyclopedia.com/doc/1O11-systemsecurity.html
https://docs.djangoproject.com/en/dev/topics/migrations/
https://docs.djangoproject.com/en/dev/topics/migrations/
http://martinfowler.com/bliki/SnowflakeServer.html
http://martinfowler.com/bliki/SnowflakeServer.html
http://research.microsoft.com/en-us/um/people/gray/papers/theTransactionConcept.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/theTransactionConcept.pdf
http://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf
http://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf
http://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
http://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
https://docs.puppetlabs.com/learning/ordering.html
https://docs.puppetlabs.com/learning/ordering.html
http://www.infoq.com/articles/virtual-panel-immutable-infrastructure
http://www.infoq.com/articles/virtual-panel-immutable-infrastructure

infoq.com/articles/virtual-panel-immutable-infrastructure,
Visited Jan 18, 2015.

[PW] Tom Preston-Werner. Semantic versioning 2.0.0. http://semver.org/

spec/v2.0.0.html, Visited Feb 19, 2015.

[Rob09] Jesse Robbins. Announcing chef, January 2009. https://www.getchef.
com/blog/2009/01/15/announcing-chef/, Visited Jan 24, 2015.

[Sev14] Doug Seven. Knightmare: A devops cautionary
tale, April 2014. http://dougseven.com/2014/04/17/

knightmare-a-devops-cautionary-tale/, Visited May 8, 2015.

[Spi07] Diomidis Spinellis. “Another level of indirection” in “Beautiful Code:
Leading Programmers Explain How They Think”, chapter 17, pages 279–
291. O’Reilly and Associates, 2007.

[TB02] Stephen Gordon Traugott and Lance Brown. Why order matters:
Turing equivalence in automated systems administration. In Proceed-
ings of the 16th USENIX Conference on System Administration, LISA
’02, Philadelphia, PA, USA, 2002. USENIX Association. http://www.

infrastructures.org/papers/turing/turing.html, Visited Jan 18,
2015.

[TH98] Steve Traugott and Joel Huddleston. Bootstrapping an infrastructure.
In Proceedings of the 12th USENIX Conference on System Administra-
tion, LISA ’98, Boston, MA, USA, 1998. USENIX Association. http://
www.infrastructures.org/papers/bootstrap/bootstrap.html, Vis-
ited May 8, 2015.

[The14a] The Docker Team. Illustration of the interfaces docker uses
to access virtualization features of the linux kernel, March
2014. http://blog.docker.com/wp-content/uploads/2014/03/

docker-execdriver-diagram.png, Visited May 6, 2015.

[The14b] Christian Theune. Flying circus rca report #13266, March 2014. http:
//flyingcircus.io/postmortems/13266.pdf, Visited Apr 27, 2015.

[The15] Christian Theune. Automatically deleting things – safely and
reliably, April 2015. http://blog.flyingcircus.io/2015/04/

24/automatically-deleting-things-safely-and-reliably/, Vis-
ited Apr 27, 2015.

Markus Holtermann XX

http://www.infoq.com/articles/virtual-panel-immutable-infrastructure
http://www.infoq.com/articles/virtual-panel-immutable-infrastructure
http://semver.org/spec/v2.0.0.html
http://semver.org/spec/v2.0.0.html
https://www.getchef.com/blog/2009/01/15/announcing-chef/
https://www.getchef.com/blog/2009/01/15/announcing-chef/
http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
http://www.infrastructures.org/papers/turing/turing.html
http://www.infrastructures.org/papers/turing/turing.html
http://www.infrastructures.org/papers/bootstrap/bootstrap.html
http://www.infrastructures.org/papers/bootstrap/bootstrap.html
http://blog.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png
http://blog.docker.com/wp-content/uploads/2014/03/docker-execdriver-diagram.png
http://flyingcircus.io/postmortems/13266.pdf
http://flyingcircus.io/postmortems/13266.pdf
http://blog.flyingcircus.io/2015/04/24/automatically-deleting-things-safely-and-reliably/
http://blog.flyingcircus.io/2015/04/24/automatically-deleting-things-safely-and-reliably/

	Introduction
	Basics
	What Is Configuration and System Management?
	What Is a Configuration Management Database?
	What Is ACID Behavior?
	What Is a Package Manager and What Are Package Dependencies?
	What Is a Virtual Machine and What Is a Linux Container?
	What Is a File System?

	Related Work
	Thematic Classification
	No Systematic Configuration Management
	Divergent Configuration Management
	Convergent Configuration Management
	Congruent Configuration Management

	Historical Connections

	Background
	Configuration Changes
	Differences Between Local and Distributed Configuration Changes
	Configuration and System Management Tools
	Problems to Consider
	System Stability and Security

	Resource Classification and Utilization
	Classification of IT Resources
	Rules Derived From the Taxonomy
	Use Cases of Configuration and System Management Tools
	Installation, Update and Removal of Programs
	Modification of User Accounts
	Modifications Involving the File System
	Network Setup Modifications
	Ordering of Changes in Distributed Systems

	Maintaining System Stability and Security
	Installation, Update and Removal of Programs
	Modification of User Accounts
	Creation
	Removal

	Modifications Involving the File System
	Network Setup Modifications
	Ordering of Changes in Distributed Systems
	Bind Server to Multiple Ports
	Redundant Server Setup

	Evaluation
	Case Study: Puppet
	Case Study: Ansible

	Conclusion and Prospects
	A. List of Abbreviations
	B. List of Figures
	C. List of Tables
	D. Case Study: Puppet
	E. Case Study: Ansible
	F. Glossary
	G. References

